2.3.2. Le taux d'inflation
(TINFL)
a) Analyse graphique 
Graphique N°6 : Taux d'inflation 
  
Le graphique présente cette variabilité autour
de n constante signe de la stationnarité de la série. 
c) Test de la racine unitaire (Test ADF) 
| 
 Null Hypothesis: TINFL has a unit root 
 | 
   | 
 
| 
 Exogenous: Constant, Linear Trend 
 | 
   | 
 
| 
 Lag Length: 5 (Automatic - based on SIC, maxlag=13) 
 | 
 
   | 
   | 
   | 
   | 
   | 
 
   | 
   | 
   | 
 t-Statistic 
 | 
   Prob.* 
 | 
 
   | 
   | 
   | 
   | 
   | 
 
| 
 Augmented Dickey-Fuller test statistic 
 | 
 -3.066660 
 | 
  0.1180 
 | 
 
| 
 Test critical values: 
 | 
 1% level 
 | 
   | 
 -4.016064 
 | 
   | 
 
   | 
 5% level 
 | 
   | 
 -3.437977 
 | 
   | 
 
   | 
 10% level 
 | 
   | 
 -3.143241 
 | 
   | 
 
   | 
   | 
   | 
   | 
   | 
 
| 
 *MacKinnon (1996) one-sided p-values. 
 | 
   | 
 
| 
 Augmented Dickey-Fuller Test Equation 
 | 
   | 
 
| 
 Dependent Variable: D(TINFL) 
 | 
   | 
   | 
 
| 
 Method: Least Squares 
 | 
   | 
   | 
 
| 
 Date: 08/22/15   Time: 15:33 
 | 
   | 
   | 
 
| 
 Sample (adjusted): 2000M08 2013M12 
 | 
   | 
 
| 
 Included observations: 161 after adjustments 
 | 
   | 
 
   | 
   | 
   | 
   | 
   | 
 
| 
 Variable 
 | 
 Coefficient 
 | 
 Std. Error 
 | 
 t-Statistic 
 | 
 Prob.   
 | 
 
   | 
   | 
   | 
   | 
   | 
 
| 
 TINFL(-1) 
 | 
 -0.234049 
 | 
 0.076321 
 | 
 -3.066660 
 | 
 0.0026 
 | 
 
| 
 D(TINFL(-1)) 
 | 
 -0.452098 
 | 
 0.098292 
 | 
 -4.599534 
 | 
 0.0000 
 | 
 
| 
 D(TINFL(-2)) 
 | 
 -0.648177 
 | 
 0.101151 
 | 
 -6.407990 
 | 
 0.0000 
 | 
 
| 
 D(TINFL(-3)) 
 | 
 -0.272864 
 | 
 0.103400 
 | 
 -2.638920 
 | 
 0.0092 
 | 
 
| 
 D(TINFL(-4)) 
 | 
 -0.136312 
 | 
 0.086283 
 | 
 -1.579823 
 | 
 0.1162 
 | 
 
| 
 D(TINFL(-5)) 
 | 
 0.153236 
 | 
 0.071555 
 | 
 2.141518 
 | 
 0.0338 
 | 
 
| 
 C 
 | 
 0.560033 
 | 
 0.844359 
 | 
 0.663264 
 | 
 0.5082 
 | 
 
| 
 @TREND("2000M02") 
 | 
 -0.002929 
 | 
 0.007703 
 | 
 -0.380191 
 | 
 0.7043 
 | 
 
   | 
   | 
   | 
   | 
   | 
 
| 
 R-squared 
 | 
 0.503465 
 | 
     Mean dependent var 
 | 
 -0.086211 
 | 
 
| 
 Adjusted R-squared 
 | 
 0.480748 
 | 
     S.D. dependent var 
 | 
 5.478952 
 | 
 
| 
 S.E. of regression 
 | 
 3.948087 
 | 
     Akaike info criterion 
 | 
 5.632752 
 | 
 
| 
 Sum squared resid 
 | 
 2384.871 
 | 
     Schwarz criterion 
 | 
 5.785865 
 | 
 
| 
 Log likelihood 
 | 
 -445.4365 
 | 
     Hannan-Quinn criter. 
 | 
 5.694922 
 | 
 
| 
 F-statistic 
 | 
 22.16220 
 | 
     Durbin-Watson stat 
 | 
 1.984417 
 | 
 
| 
 Prob(F-statistic) 
 | 
 0.000000 
 | 
   | 
   | 
   | 
 
   | 
   | 
   | 
   | 
   | 
 
  
Le test sur le modèle avec tendance et constante
indique que la statistique ADF est non significatif (probabilité
critique=11,8%) mais le trend dans l'équation du test est
également non significatif par conséquent nous passons au
modèle sans tendance pour la décision du test. 
| 
 Null Hypothesis: TINFL has a unit root 
 | 
   | 
 
| 
 Exogenous: Constant 
 | 
   | 
   | 
 
| 
 Lag Length: 5 (Automatic - based on SIC, maxlag=13) 
 | 
 
   | 
   | 
   | 
   | 
   | 
 
   | 
   | 
   | 
   | 
   | 
 
   | 
   | 
   | 
 t-Statistic 
 | 
   Prob.* 
 | 
 
   | 
   | 
   | 
   | 
   | 
 
   | 
   | 
   | 
   | 
   | 
 
| 
 Augmented Dickey-Fuller test statistic 
 | 
 -3.308541 
 | 
  0.0161 
 | 
 
| 
 Test critical values: 
 | 
 1% level 
 | 
   | 
 -3.471192 
 | 
   | 
 
   | 
 5% level 
 | 
   | 
 -2.879380 
 | 
   | 
 
   | 
 10% level 
 | 
   | 
 -2.576361 
 | 
   | 
 
   | 
   | 
   | 
   | 
   | 
 
   | 
   | 
   | 
   | 
   | 
 
| 
 *MacKinnon (1996) one-sided p-values. 
 | 
   | 
 
| 
 Augmented Dickey-Fuller Test Equation 
 | 
   | 
 
| 
 Dependent Variable: D(TINFL) 
 | 
   | 
   | 
 
| 
 Method: Least Squares 
 | 
   | 
   | 
 
| 
 Date: 08/22/15   Time: 15:33 
 | 
   | 
   | 
 
| 
 Sample (adjusted): 2000M08 2013M12 
 | 
   | 
 
| 
 Included observations: 161 after adjustments 
 | 
   | 
 
   | 
   | 
   | 
   | 
   | 
 
   | 
   | 
   | 
   | 
   | 
 
| 
 Variable 
 | 
 Coefficient 
 | 
 Std. Error 
 | 
 t-Statistic 
 | 
 Prob.   
 | 
 
   | 
   | 
   | 
   | 
   | 
 
   | 
   | 
   | 
   | 
   | 
 
| 
 TINFL(-1) 
 | 
 -0.219915 
 | 
 0.066469 
 | 
 -3.308541 
 | 
 0.0012 
 | 
 
| 
 D(TINFL(-1)) 
 | 
 -0.465542 
 | 
 0.091456 
 | 
 -5.090330 
 | 
 0.0000 
 | 
 
| 
 D(TINFL(-2)) 
 | 
 -0.659862 
 | 
 0.096101 
 | 
 -6.866352 
 | 
 0.0000 
 | 
 
| 
 D(TINFL(-3)) 
 | 
 -0.281612 
 | 
 0.100526 
 | 
 -2.801386 
 | 
 0.0057 
 | 
 
| 
 D(TINFL(-4)) 
 | 
 -0.141870 
 | 
 0.084799 
 | 
 -1.673023 
 | 
 0.0964 
 | 
 
| 
 D(TINFL(-5)) 
 | 
 0.150282 
 | 
 0.070934 
 | 
 2.118621 
 | 
 0.0357 
 | 
 
| 
 C 
 | 
 0.269484 
 | 
 0.358046 
 | 
 0.752652 
 | 
 0.4528 
 | 
 
   | 
   | 
   | 
   | 
   | 
 
   | 
   | 
   | 
   | 
   | 
 
| 
 R-squared 
 | 
 0.502996 
 | 
     Mean dependent var 
 | 
 -0.086211 
 | 
 
| 
 Adjusted R-squared 
 | 
 0.483632 
 | 
     S.D. dependent var 
 | 
 5.478952 
 | 
 
| 
 S.E. of regression 
 | 
 3.937106 
 | 
     Akaike info criterion 
 | 
 5.621274 
 | 
 
| 
 Sum squared resid 
 | 
 2387.124 
 | 
     Schwarz criterion 
 | 
 5.755248 
 | 
 
| 
 Log likelihood 
 | 
 -445.5125 
 | 
     Hannan-Quinn criter. 
 | 
 5.675673 
 | 
 
| 
 F-statistic 
 | 
 25.97610 
 | 
     Durbin-Watson stat 
 | 
 1.984769 
 | 
 
| 
 Prob(F-statistic) 
 | 
 0.000000 
 | 
   | 
   | 
   | 
 
   | 
   | 
   | 
   | 
   | 
 
   | 
   | 
   | 
   | 
   | 
 
  
Le test sur le modèle avec constante sans tendance nous
indique que la statistique ADF est significatif (probabilité
critique=1,61%) la série est donc stationnaire à nouveau. 
 |