WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Identification des personnes par reconnaissance de visage pour la sécurité d'une institution bancaire

( Télécharger le fichier original )
par Serge KOMANDA BASEMA
Institut supérieur pédagogique de Bukavu- RDC - Licence en informatique de gestion option pédagogie appliquée 2010
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

2.2.2 Méthodes locales

Les méthodes locales, basées sur des modèles, utilisent des connaissances a priori que l'on possède sur la morphologie du visage et s'appuient en général sur des points caractéristiques de celui-ci. Kanade présenta un des premiers algorithmes de ce type en détectant certains points ou traits caractéristiques d'un visage puis en les comparant avec des paramètres extraits d'autres visages. Ces méthodes constituent une autre approche pour prendre en compte la non-linéarité en construisant un espace de caractéristiques local et en utilisant des filtres d'images appropriés, de manière à ce que les distributions des visages soient moins affectées par divers changements.

Les approches Bayesiennes, les machines à vecteurs de support, la méthode des modèles actifs d'apparence ou encore la méthode «local binary pattern» ont été utilisées dans ce but.

Toutes ces méthodes ont l'avantage de pouvoir modéliser plus facilement les variations de pose, d'éclairage et d'expression par rapport aux méthodes globales. Toutefois, elles sont plus lourdes à utiliser puisqu'il faut souvent placer manuellement un assez grand nombre de points sur le visage alors que les méthodes globales ne nécessitent de connaître que la position des yeux afin de normaliser les images, ce qui peut être fait automatiquement et de manière assez fiable par un algorithme de détection.

2.2.3 Méthodes hybrides

Les méthodes hybrides permettent d'associer les avantages des méthodes globales et locales en combinant la détection de caractéristiques géométriques (ou structurales) avec l'extraction de caractéristiques d'apparence locales. Elles permettent d'augmenter la stabilité de la performance de reconnaissance lors de changements de pose, d'éclairement et d'expressions faciales.

L'analyse de caractéristiques locales et les caractéristiques extraites par ondelettes de Gabor (comme l'Elastic Bunch Graph Matching, dont on trouvera une présentation plus détaillée en Annexe B.3), sont des algorithmes hybrides typiques.

Plus récemment, l'algorithme LogGabor PCA effectue une convolution avec des ondelettes de Gabor orientées autour de certains points caractéristiques du visage afin de créer des vecteurs contenant la localisation et la valeur d'amplitudes énergétiques locales ; ces vecteurs sont ensuite envoyés dans un algorithme PCA afin de réduire la dimension des données.

La figure 6 fournit une classification des algorithmes principaux de reconnaissance faciale.

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Il ne faut pas de tout pour faire un monde. Il faut du bonheur et rien d'autre"   Paul Eluard