[1] M. ARcoNEs, On the law of iterated logarithm for Gaussian
processes, JouRNAL of ThEoRETicAL PRobAbiLiTy 8 (4) 877-904 (1995).
[2] A. AyAchE, S. LEgER, M. PoNTiER, Drap brownian
fractionnaire,PoTENTiAL ANAL. 17 31-43 (2002).
[3] G. DA PRATo, J. JAbczyk, Ergodicity for infinte dimensional
systems, CAmbRidgE UNivERsiTy PREss,(1993).
[4] D. FEyEL, A. DE LA PRAdELLE, On fractional Brownian
processes, PoTENTiAL ANAL. 10 273-288 (1999).
[5] A.KAmoNT,On the fractional anisotropic Wiener field, PRobA.
MATh. STAT., 16, 85-98 (1996).
[6] F. KLiNgENhöfER, M. ZähLE, Ordinary differential
equations with fractal noise, PRoc. AmER. MATh. Soc. 127 1021-1028(1999).
[7] S. LEgER, M. PoNTiER, Drap brownian fractionnaire,C. R.
AcAd. Sci. PARis 329 893-898 (1999).
[8] Y. MAshuRA, Stochastic calculus for fractional Brownian
motion and related processes, SpRiNgER-VERLAg BERhim HEidELbERg (2008).
[9] B. MAsLowski, D. NuALART, Evolution equations deriven by
fractional Brownian motion, J. FuNcT. ANAL. 202 277-305 (2003).
[10] D. NuALART, A. RAscANu, Differential equations driven by
fractional Brownian motion, CoLLEcT. MATh. 53 55-81 (2002).
[11] A.A. RuzmAikiNA, Stieltjes integrals of Hölder
continuous functions with applications to fractional Brownian motion,J. STAT.
Phys. 1000 1049-1069 (2000).
[12] S.G. Samko, A.A. Kilbas, O.I. MarichEv, Fractional
Integrals and Derivatives. Theory and Applications, Gordon and BrEach SciEncE
PublishErs, NEw York (1993).
[13] A.D. VEnttsEl,A course in the theory of stochastic
processes, McGraw Hill, NEw York (1981).
[14] J. YEh, CamEron-Martin, Translation theorems in the
Wiener space of functions of two-variables,Trans. AmEr. Math. Soc. 107 409-420
(1963).
[15] L.C. Young, An inequality of the Hölder type connected
with Stieltjes integration, Acta Math. 67 251-282(1936).
[16] M. ZählE, Integration with respect to fractal
functions and stochastic calculus I,Probab.ThEory RElatEd FiElds 111 333-374
(1998).