MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE
SCIENTIFIQUE
UNIVERSITE Dr. MOULAY TAHAR DE SAÏDA FACULTE DES
SCIENCES & TECHNOLOGIE DEPARTEMENT DE MATHEMATIQUES &
INFORMATIQUE
Mémoire de MASTER
Système d'études: LMD-Master 2 Recherche
Spécialité: Probabilités & Applications
Intitulé
Stochastic Differential Equations Involving
The Two-parameter Fractional Brownian Motion
Présenté par
Mr. Iqbal HAMADA Soutenu publiquement le: 18/06/2012
Devent le jury composé de:
Président
|
A. Kandouci
|
Maître de conférences
|
(Univ.Saïda)
|
Rapporteur
|
T. Guendouzi
|
Maître de conférences
|
(Univ.Saïda)
|
Examinateurs
|
O. Benzatout
|
Maître assistant classe A
|
(Univ.Saïda)
|
|
N. Ait Ouali
|
Maître assistant classe B
|
(Univ.Saïda)
|
Promotion 2011/2012
Si tu veux courir, cours un kilomètre, si tu
veux changer ta vie, cours un marathon Emil Zatopek1.
REMERCIEMENT
Il m'est agréable, avant de commencer la partie
purement mathématique de ce mémoire, d'adresser quelques
remerciements. Je demande par avance à ceux que je vais oublier de bien
vouloir me le pardonner.
Mon premier ira à Guendouzi Toufik , à qui j'ai
demandé il y a deux ans de m'encadrer. Il a accepté de bon coeur
et déjà pour ça je l'en remercie. Il m'a proposé un
sujet riche et fertile et est à l'origine d'un certain nombre
d'idées contenues dans ce mémoire. De plus, c'est entre autres
lui, grâce à ses qualités pédagogiques et à
la clarté de ses différents cours, qui m'a donné l'envie
de me lancer dans les probabilités et d'en faire mon métier.
Kandouci Abdeldjebbar a accepté la lourde tâche
d'être président de ce mémoire.
O. Benzatout, N. Ait Ouali je suis conscient de l'honneur
qu'elles me font en me permettant d'associer leurs noms à ma modeste
contribution scientifique .
Mon sujet de mémoire m'a naturellement amené
à faire la connaissance de plusieurs personne.
En général, au début de son
mémoire, on est un peu perdu. Pour ma part, je crois avoir eu beaucoup
de chance en travaillant avec Jérome. Car trouver une personne qui,
malgré son emploi du temps chargé, se propose de vous montrer
l'attirail du chercheur et comment on s'en sert, tout le monde n'a pas ce
privilège. Bien entendu, son rôle ne s'est pas arrêté
là. Nous avons beaucoup travaillé ensemble et c'est d'ailleurs
avec lui que j'ai construit une bonne partie du contenu de ce
mémoire.
Enfin, je n'ai pas abordé le cas de mes proches. Quand
on dit qu'on est en train de préparer un mémoire en
mathématiques, cela procure en général chez son
interlocuteur un sentiment ambigu. Tout d'abord, je pense ne pas manquer de
modestie en disant que souvent ça impressionne. Et puis, immanquablement
on a droit à la question "Mais à quoi ça sert la recherche
en maths?". Il y a alors une stratégies est celle consiste à
répondre "à rien pardi!" et à passer à autre
chose.
Pourtant (enfin, je m'avance peut-être en écrivant
ces lignes) ça n'a pas em- pêché mes amis et mes proches
de venir assister à ma soutenance. Ils n'auront rien compris, j'en
suis sûr, mais n'est-ce pas un bon moyen de tester les liens
4
du sang ou d'amitiés? Plus nommément, je
voudrais déjà en premier lieu remercier Soufiane, qui m'a souvent
remonté le moral lors de mes baisses de régime et de motivation
récurrentes. On finit ensemble nos études cette année et
je la felicite pour sa brillante réussite.
Ensuite, j'adresse un vif remerciement à ma famille.
A mon frère, qui doit être l'un des seuls
lycéens à avoir "appris" ce qu'était le MBF avant de
connaître l'intégrale classique de terminale.
Enfin, j'ai une pensée pour Emilie et Morais, qui ont
toujours montré un grand intérêt pour ce que je faisais.
Ouaf!: ça, c'était pour Amine... il comprendra!
Contents
Introduction 7
1 The Elements of Fractional Brownian Motion 9
1.1 Fractional Brownian Motion 9
1.1.1 Self-similarity 9
1.1.2 Hölder Continuity 10
1.1.3 Path Differentiability 11 1.1.4 The Fractional
Brownian Motion is not a Semimartin-
galeforH=61 2 11 1.1.5 Fractional Integral and
Fractional Derivative of Function 12
1.2 Two-parameter Fractional Brownian Motion 13
1.2.1 The Main Definition 13
1.2.2 Fractional Integrals and Fractional Derivatives of Two-
parameter Functions 14
1.2.3 Hölder Properties of Two-parameter fBm 16
1.2.4 Fractional Generalized Two-parameter Lebesgue-Stieltjes
Integrals 17
2 Stochastic Integration with Respect to Two-parameter Fractional
Brownian Motion 19
2.1 Pathwise Integration in Two-parameter Besov Spaces 19
3 Existence and Uniqueness of the Solutions of SDE with
Two-Parameter Fractional Brownian Motion 29
Bibliography 35
Introduction
In problems of stochastic analysis and in the investigation of
certain physical problems -in particular, in hydromechanics-, it is necessary
to construct a field, i.e., two-parameter random functions with stationary
increments. Fractional Brownian fields may serve as an example of such
functions. To consider, stochastic differential equations with fractional
Brownian fields, it is necessary to construct first a theory of integration
with respect to those fields, witch is done in the present Master thesis.
The main objective of this thesis is to study the so-called
Equations Differentials Stochastics Involving Two-parameter Fractional Brownian
Motion. This thesis consist of three chapters, Element of Fractional Brownian
Motion, Stochastic Integration with Respect to Two-parameter Fractional
Brownian Motion, Existence and Uniqueness of the Solutions of SDE with
Two-Parameter Fractional Brownian Motion. The first chapter is divide in two
section, in the first we give the definition of Fractional Brownian Motion
(case of one parameter), and some properties; in the second section we give the
necessary notion of Two-parameter Fractional Brownian Motion and Hölder
properties of Two-parameter Fractional Brownian Motion. In the second chapter
we study Pathwise Integration in Two-parameter Besov Spaces of Two-parameter
Fractional Brownian Motion. The Existence and Uniqueness of the Solutions of
SDE with Two-Parameter Fractional Brownian Motion are given in last chapter.
Chapter 1
The Elements of Fractional
Brownian Motion
1.1 Fractional Brownian Motion
Definition 1.1.0.1. The (two-sided, normalized) fractional
Brownian motion (fBm) with Hurst index H E (0, 1) is a Gaussian process
BH = {BH t , t E R} on (Ù, F, P), having the
properties:
1. BH 0 = 0,
2. EBH t = 0; t E R,
1 (|t|2H + |s|2H - |t - s|2H) ;
t, s E R,
3. EBH t BH s = 2
1.1.1 Self-similarity
Definition 1.1.1.1. We say that an Rd-valued random
process X = (Xt)t=0 is self-similar or satisfies the property of
self-similarity if for every a > 0 there exist b > 0 such that:
law (Xat, t = 0) = law (bXt, t = 0) (1.1)
Note that (1.1) means that the two process Xat and bXt
have the same finite-dimensional distribution functions, i.e., for every choice
t1, ..., tn E R,
P (Xat0 = x0, ..., Xatn = xn) =
P(bXt0 = x0, ..., bXtn = xn) For every x0,
..., xn E R.
Definition 1.1.1. A stochastic process X = {Xt, t E R} is called
b-selfsimilar if
{Xat,t E R} d ={abXt,t E R} in
the sense of finite-dimensional distributions.
1.1.2 Hölder Continuity
We recall that according to the Kolmogorov criterion [13], a
process X = (Xt)t?R admits a continuous modification if there exist constants
á = 1, â > 0 and k > 0 such that
E [|X(t) - X(s)|á] = k|t -
s|1+â
for all s,t E R.
Theorem 1.1.2.1. Let H E (0, 1). The fractional Brownian
motion BH admits a version whose sample paths are almost surely Hölder
continuous of order strictly less than H.
Proof. We recall that a function f : R -? R is Hölder
continuous of order á, 0 < á = 1 and write f E
Cá(R), if there exists M > 0 such that
|f(t) - f(s)| = M|t - s|á,
For every s, t E R. For any á > 0 we have
E ~|BH t - BH s |á] = E [|BH 1 |á] |t -
s|áH;
Hence, by the Kolmogorov criterion we get that the sample
paths of BH are almost everywhere Hölder continuous of order
strictly less than H. Moreover, by [1] we have
lim
t-+0+
|
sup
|
~~BH ~~
t
|
= CH
|
tHs/log log t-1
|
with probability one, where CH is a suitable constant. Hence
BH can not have sample paths with Hölder continuity's order
greater than H.
1.1.3 Path Differentiability
By[9] we also obtain that the process BH is not mean
square differentiable and it does not have differentiable sample paths.
Proposition 1.1.3.1. Let H E (0, 1). The fractional Brownian
motion sample path BH(.) is not differentiable. In fact, for every
t0 E [0, 8)
~~~~
sup
lim
t--+t0
~~~~ = 8
BH t - BH t0
t - t0
With probability one.
1.1.4 The Fractional Brownian Motion is not a
Semi-martingale for H =6 1 2
The fact that the fractional brownian motion is not a
semimartingale for H =61 2 has been proved by several authors. In
order to verity BH is not a semimartingale for H
=61 2, it is sufficient to compute the p-variation
of BH.
Definition 1.1.4.1. Let (X(t))tE[0,T ] be a stochastic process
and consider a partition ð = {0 = t0 < t1 < ... < tn =
T}. Put
8p(X,ð) := Xn |X(ti) -
X(ti_1)|p
i=1
The p-variation of X over the interval [0, T] is defined as
Vp(X, [0, T]) := sup
ð
|
8p(X, ð),
|
where ð is a finite partition of [0, T]. The index of
p-variation of a process is defined as
I(X, [0, T]) := inf {p > 0; Vp(X, [0, T]) <
8}.
We claim that
I(BH, [0, T ]) = 1H .
In fact, consider for p > 0,
Yn,p = npH_1
|
Xn i=1
|
~~'~~ p ~BH ( i n) - BH .
(i-1
n )
|
12
1.1.5 Fractional Integral and Fractional Derivative of
Function
Since BH has the self-similarity property, the
sequenceYn,p, m ? N has the same distribution as
eYn,p = m-1
|
Xn i=1
|
~'Ip . ~BH i - BH i-1
|
And by the Ergodic theorem [3] the sequence eYn,p
converges almost surely and in L1 to E [~~BH ~~p] as n tends to
infinity. It follows that
1
Vn,p =
|
Xn i=1
|
~~'~I p
~BH ( i n) - BH (i_1
n )
|
converges in probability respectly to 0 if pH > 1 and to
infinity if pH < 1 as
1
n tends to infinity. Thus we can conclure that I(BH,
[0, T]) = H . Since for
every semimartingale X, the index I(X, [0, T]) must belong to [0,
1]?{2}, the
1
fractional brownian motion BH can not be a
semimartingale unless H = 2.
1.1.5 Fractional Integral and Fractional Derivative of
Function
Let á > 0 (and in most cases below á < 1
though this is not obligatory). Define the Riemann-Liouville left- and
right-sided fractional integrals on (a, b) of order á by
Z x
1
(Iá a+f)(x) := f(t)(x -
t)á?1dt,
['(á) a
and
Z b
1
(Iá b_f)(x) := f(t)(t -
x)á-1dt,
['(á) x
respectively.
We say that the function f ? D(Iá a+(b_))
(the symbol D(.) denotes the domain of the corresponding operator), if the
respective integrals converge for almost all (a.a.) x ? (a, b) (with respect to
(w.r.t.) Lebesgue measure).
The Riemann-Liouville left and Right sided fractional integrals
on R are defined as
J x
1
(Iá +f)(x) := f(t)(x -
t)á-1dt,
['(á) -8
and
J 8
1
(Iá -f)(x) := f(t)(t -
x)á?1dt,
['(á) x
respectively.
The Riemann-Liouville left and Right sided fractional derivatives
of f of order á on IR are defined by
(I-á
+ f)(x) = (Dá+f)(x) :=
|
Z x
1 d
f(t)(x - t)-ádt,
(1 - á) dx -8
|
and
|
(I-á
-f)(x) = (Dá-f)(x) :=
|
-1
|
Z 8
d f(t)(t - x)-ádt,
dx x
|
|
(1 - á)
|
respectively.
For f ? Iá#177;(Lp(118)) with p >
1 the Riemann-Liouville left and Right sided derivatives coincide with the
Marchaud fractional derivatives
( 15á+f)(x) := (1 1 á) /L#177; (f(x) - f(x-
y))y-á-1dy,
and
( fiáf)(x) := (1 1 á)
L#177; (f(x) - f(x+ respectively.
Proposition 1.1.5.1. [4] Assume that f,g are C1([a,
b])-function with f(a) = 0. Let á, â ? (0,1] be such that
á+ â > 1 and let ä := {a = t0 < ... < tn
= b} be a partition of [a, b] with the norm 1ä1 = max (tj+1 - tj). Then
for
j
every 0 < å < á + â - 1 the following
estimates hold:
~~~~
|
fb
f(t)dg(t) = C(á,
â)1fk[a,b],álgk[a,b],â(b - a)1+å, (1.2)
a
|
~~Z~~~ a b
~
f (t)dg(t) - E f (ti)[g(ti+1) - g (ti)] ~= C(á, â)1f
[a,b],á1g1[a,b],â(b - a)å.
~
i
(1.3)
1.2 Two-parameter Fractional Brownian Motion
1.2.1 The Main Definition
For technical simplicity we consider two-parameter fBm (fBm
field) {BHt , t ? 1182+},
where t = (t1, t2). We suppose that s = t if s = (s1, s2), t = (t1, t2) and si
= ti, i = 1, 2.
1.2.2 Fractional Integrals and Fractional Derivatives of
14 Two-parameter Functions
Definition 1.2.1. The two-parameter process
{BHt ,t ? R2+} is called a
(normalized) two-parameter fBm with Hurst index H = (H1, H2) ?
(0,1)2, if it satisfies the assumptions:
(a) BH is a Gaussian field, Bt = 0 for t ?
?R2+;
(b) EBti = 0, EBt HBH = 1 11
4
(ti 2Hi si 2Hi ti si
i=1,2
Evidently, such a process has the modification with continuous
trajectories, and we will always consider such a modification. Moreover,
consider "two-parameter" increments:ÄsBHt
:= BHt - BHs1t2 - BHt1s2 + BHs for
s = t. Then they are stationary. Note, that for any fixed ti > 0
the process BH
(ti,.)
will be the fBm with Hurst index Hj, i = 1,2, j = 3 - i,
evidently, nonnormalized.
1.2.2 Fractional Integrals and Fractional Derivatives of
Two-parameter Functions
For á = (á1, á2) denote (á) =
(á1)1(á2)
Definition 1.2.2. [12] Let f ? T := [a, b] := 11 [ai, bi], a =
(a1, a2),
i=1,2
b = (b1, b2). Forward and backward Reimann-Liouville fractional
integrals of orders 0 < ái < 1 are defined as
(Iaá_r12 f)(x) :=
(á) f (u) ?(x, u, 1 - á) du,
and
(Ir2 f)(x) := (á) f (u)
du
lx,b] ?(x, u, 1 - á) ,
correspondingly, where [a, x] = 11 [ai, xi], [x, b] = 11
[xi,bi],du = du1du2,
i=1,2 i=1,2
?(u, x, á) =| u1 - x1 |á1| u2 - x2
|á2, u, x ? [a, b].
Definition 1.2.3. Forward and backward fractional Liouville
derivatives of orders 0 < ái < 1 are defined as
2
(Dr2 f)(x) := (1 f (u) a) \ du
?x1?x2 ?(x, u, á)
and
?2 f (u) , du, x ? [a, b]
(Dr :á2 x)
:= (1 - á) ?x1?x2 i[x,b] ?(x, u, á)
1.2.2 Fractional Integrals and Fractional Derivatives of
Two-parameter Functions 15
Definition 1.2.4. Forward fractional Marchaud derivatives of
orders 0 < ái < 1 are defined as
~ f Äu xdu
( 15r2 f)(x) :=(1 - á) f (x) +
?(x, u, á) á1á2 ./[a,x] ?(x, u,(
1 )+ á)
+ E
i=1,2,j=3-i
|
ái
|
áj
|
ix% f (x) - f (ui, x j)
dui) a% (xi - ui)1+á%
|
xj - aj
|
and the backward derivatives can be defined in a similar way
Let 1 = p = 8, the classes Iá1á2
+ (Lp(T )) := ~f|f = Iá1á2
a+ ?, ? ? Lp(T )~,
I
á1á2 - (Lp(T )) := ~f|f =
Iá1á2 b- ?, ?? Lp(T)1 Further we denote
Dá1á2
a+ := Ia-+ á1á2). Of course, we can
introduce the notion of fractional integrals and fractional derivatives on
R2 +. For exemple, the Riemann-Liouville left and Right sided
fractional integrals and derivatives on R2+ are defined
by the formulas
(If+ l1á2 f)(x) := (á) L8 f(t) ,x] cp(x , u,
á)dt
f (t)
(I21á2 f)(x) := (á) 48) ?(x,u, á) dt,
2
(cá
(á12)f)(x) = (DTá2 f)(x) :=
(1 - á) ? x1?x2
?I f(t)
(,,x] (p(x ,t, á) dt
and
2
f ft)
(I-(á1á2)f)(x)
(Dá1á2f)(x)
:= (1 - á) ?x1?x2 i[x,8) ?(x( t,
á)dt,
0 < ái < 1. Evidently, all these operators can be
expanded into the product
of the form Iá1á2
+ = Iá+ 1 ? Iá2 +, and so on. In what
follows we shall consider
only the case Hi ? (1/2, 1). Define the operator
YM#177; 1 H2 f :=
i=1,2
|
C(3)
H%Iá1á2 #177; f.
|
1.2.3 Hölder Properties of Two-parameter fBm
We fix á = (á1, á2), ái ? (0,1] and
let T = [a1, b1] × [a2, b2]. Let f the Riemann-Liouville fractional
integral of order á i.e
1
x1 Ix2
2 (x1 - t1) 1-- f (át1,t21 (x2 )-
t2)--á2
f)(x1, x2) = (al)F(a2) dt1dt2, (x1, x2) ? T
vx1)v.1ritc:E2) a1 . a
p
The space Ëá,p =
(Iaá+)(Lp(T)) is called the Liouville
space (or Besov space) and it becomes separable Banach space with respect to
the norm WEc+fllá,p = IIfII
Proposition 1.2.3.1. [6] For every á, â
Iá a+Iâ a+=
Iá+â
a+ ,
If f ? C2b (T) and f = 0 on ?1T = ([a1,b1]
× {b1}) ? ({a1} × [a2,b2])then the function
1 f x1 14+ f (x1, x2) = r2 ?2f(t1,t2) dt1dt2
(1 - á1)(1 - á2) L1 Ja2
?t1?t2 (x1 - t1)á1 (x2 - t2)á2
(1.4)
is the unique function from L8(T) such that
Iáa+Dáa+f
= f.
For a rectangle D = [s1, t1] × [s2, t2] ? T we define the
increment on D of the function f : T ? R by
f(D) = f(t1,t2) - f(t1, s2) - f(s1,t2) + f(s1, s2).
We denote by C[ai,bi],ái the space of all
ái-Hölder functions on [ai, bi] and
kfk[ai,bi],ái = sup
u6=v,ai=u,v=bi
|
|f(u) - f(v)|
(u - v)ái .
|
Also, we denote by CT,á1,á2 the space of all
(á1, á2)-Hölder functions on T, i.e., f ?
CT,á1,á2 if f is continuous,
If(a1, .)k[a2,b2],á2 < 8, f(., a2)k[a1,b1],á1
< 8
and
|f([u1, v1] × [u2, v2])|
< 8.
|u1 - v1|á1|u2 - v2|á2
kfkT,á1,á2 = sup
ui6=vi
Proposition 1.2.3.2. [4] Let 0 < â1 < á1,0
< â2 < á2 and p = 1. Then we have the continuous
inclusions Ëá,p ? Ëâ,p,
Ëá,p ?
Cá1-p-1,á2-p-1, Câ1,â2 ?
Ëã,p if áip > 1, âi > ãi > 0
1.2.4 Fractional Generalized Two-parameter
Lebesgue-Stieltjes Integrals 17
1.2.4 Fractional Generalized Two-parameter
LebesgueStieltjes Integrals
Let 0 = ái = 1, i = 1, 2 be fixed. In what follows, we
assume that all functions considered belong to the space D(T), i.e., at every
point (x1, x2) ? T, they have limits in the four quadrants
Q++(x1, x2) = {(s1, s2) ? T : s1 = x1, s2 = x2} ,
Q+-(x1, x2) = {(s1, s2) ? T : s1 = x1, s2 < x2} ,
Q-+(x1, x2) = {(s1, s2) ? T : s1 < x1, s2 = x2} ,
Q--(x1, x2) = {(s1, s2) ? T : s1 < x1, s2 < x2} ;
furthermore,
f(x1, x2) lim f (s1, s2)
=
(s1,s2)?Q++?(x1,x2)
and, on the sides of the rectangle, the limits that can be
defined are supposed to exist and denoted as f(x1, b-2 ),
f(b-1 , x2), f(b-).Denote fa+(x)
= Äaf(x), x ? T, and fb-(x) := f(x) - f(x1,
b-2 ) - f(b-1 , x2) + f(b-),
a := (a1, a2), b := (b1, b2).
Definition 1.2.5. Let f, g : T -? R. The generalized
two-parameter LebesgueStieltjes integral of the function f w.r.t to the
function g is defined by
Z Z
f(x, y)dg(x, y) :=
K(D:1+ á2 a+)(x,
y)(D1Tá11?á2 gb-)(x, y)dxdy
+ I (Dá+ fa+ ) (x, a2) (D-
á1) (gb- (x, b2 ) - gb- (x, a2))
dx
a1
a b2
+ (DZ fa+2 ) (a1, y)(D1bá2) (gb-(b1
,y) - gb-(a1, y)) dy + f (a)Äag(b)
a2
Where
fa+1 (x, a2) = f(x, a2) - f(a),
fa+2 (a1, y) = f(a1, y) - f(a),
gb-1 (x, b-2 ) = g(x,
b-2 ) - g(b-), gb-1 (x, a2) = g(x,
a2) - g(b-1 , a2),
gb- 2(b-1 , y) = g(b-1 , y) -
g(b-), gb- 2(a1, y) = g(a1, y) - g(a1, b- 2 ).
1.2.4 Fractional Generalized Two-parameter Lebesgue-Stieltjes 18
Integrals
Chapter 2
Stochastic Integration with
Respect to Two-parameter
Fractional Brownian Motion
2.1 Pathwise Integration in Two-parameter Besov
Spaces
The next result gives an estimate of the Stieltjes integral
for smooth functions in terms of Hölder norms and represents the essential
step for extending the Stieltjes integral to Hölder functions of two
variables.
Proposition 2.1.1. Let ái + âi > 1, ái,
âi ? (0, 1], f, g ? C2(T) and let 0 < åi
< ái + âi - 1. Then
iab1 b2 1
a
2
~~
f(t1, t2)dg(t1, t2) ~~
~~~~
= C(ái, âi)1gkT,â1,â2
{1f1T,á1,á2(b1 - a1)á1+â1(b2 -
a2)á2+â2 +kf(., a2)1[a1,b1],á1(b1 -
a1)1+å1(b2 - a2)â2
+1f(a1, .)1[a2,b2],á2(b1 - a1)â1(b2 -
a2)1+å2 + |f(a1, a2)| (b1 - a1)â1(b2 -
a2)â2~
|
(2.1)
|
Moreover, for every partition A = (si, tj)i,j, a1 = s1
< ... < sn1 = b1, a2 = t1 < ... < tn2 = b2, 1A1 =
max(si+1 - si) + max(tj+1 - tj) , we have
i j
X 1
j
~~Z b1 Z b2 n1-1X n2-
f(si, tj)g ([si, si+1] × [tj, tj+1])
~~f(u1, u2)dg(u1, u2) -
~ a1 a2 i=1 =1
Z b1 Z b2 ~~~~ = (b1 -
a1)å1(b2 - a2)å2
f(t1, t2)dg(t1, t2) å1å2(å1)(å2)
a1 a2
~~~~
kf1 * h1k8
(b1 - a1)1+å1(b2 -
a2)1+å2
=
å1å2(å1)(å2) kf1k8kh1k8.
(2.2)
+ C(ái,âi)11fIIT,á1,á2
[11g1IT,â1,â211Ällá1+â1+á2+â2
(11g11T,â1,â2 .)1[a2,b2],â2)
1ÄMá1
+ (1g1T,â1,â2 + kg(.,
a2)k[a1,b1],â1) 1Ä1á2] .
Proof. Assume first that f = 0 on ?1T and define
h(t1, t2) = g(b1 - t1, b2 - t2) - g(b1 - a1, b2 - t2) (2.3)
-g(b1 - t1, b2 - a2) + g(b1 - a1, b2 - a2).
Then
Z b1 Z b2 f(t1, t2)?2g(t1,
t2) dt1dt2 = ?2(f * h)(b1, b2) . ?t1?t2 ?t1?t2
a1 a2
Choose åi > 0, 0 < á0i
< ái, 0 < â0i < âi
withá0 i + â0 i = 1 +åi. By proposition 1.2.3.1
the function f1 = Daá+' f, h1 =
Daâ+' h are in L8 and
satisfy
I
á0
Iâ0 a+f1 = f, a+h1 = h.
(2.4) Then by proposition 1.2.3.1, (2.3) and (2.4) we have
Z b1 Z b2 Z b1 Z b2 f(t1,
t2)?2g(t1, t2)
f(t1, t2)dg(t1, t2) = dt1dt2
?t1?t2
a1 a2 a1 a2
?2(f * h)(b1,b2)
=
?2
?t1?t2
h i
Iá0
=
?t1?t2 ?2
=
a+f1 * Iâ0
a+h1 (b1, b2)
h i
Iá0+â0
a+ (f1 * h1) (b1, b2)
?t1?t2
?2 ~I1
= a+Iå a+(f1 * h1) (b1, b2)
?t1?t2
= Iå a+(f1 * h1)(b1, b2), such that
I1a+ = I(1,1) a+,
Iåa+ = Iå1,å2
a+
and then
Next, the integration by parts for functions of two variables
(see[14]) yields
(1 - á0(1 - á'2)
a2
(x1, x2) =
x1 1 r2 df ([t1,x1] × [t2, x2])
(x1 - t1)á 4 (x2 - t2)á 4
1 f ([t1,x1] × [t2, x2]) lim (1 -
á0(1 - á'2) t%?x% (x1 -
t1)á4 (x2 - t2)á4
lirn
x1 f ([t1, x1] [t2, )
dt
t2?x2 x21,
- ja1 (x1 toá, (x2
t2)j ál 2 1
- lim
f ([t1,x1]×[t2, x2]) dt2
ja2 (x1 - t1)á4 (x2 -
t2)á4
+áV1á02
|
x1 r2 f ([t1,x1] × [t2, x2]) dt1dt2
a1 } Ja2 (x1 -
t1)á4+1(x2 - t2)á2+1
|
r2 f ([t1,x1] × [t2, x2]) dt dt
(1 - áo(1 - a1 Ja2 (x1 -
t1)á1+1(x2 - t2)á2+1
i 2,
so that
2)kfkT,á1,á2
(1 - á0 1)(1 - á0
á0 1á0 2
x1 Ix2
Ja1 a
2
(2.6)
× (x1 - t1)á1?á01-1(x2 -
t2)á2?á02-1dt1dt2
= ckfkT,á1,á2(b1-
a1)á1?á01(b2 - a2)á2?á02.
Similary
kh1k8 = c1kgkT,â1,â2(b1-
a1)â1?â01(b2 - a2)â2?â02.
(2.7)
By using (2.6) and (2.7) in (2.5) we obtain (2.1) if f = 0 on
?1T. If f is not necessarily null on ?1T then we define
f(t1, t2) = f ([a1, t1] × [a2, t2]) .
Then f = 0 on ?1T and f, f have the same increments. Then we
have
Z b1 Z b2 f(t1, t2)?2g(t1,
t2) dt1dt2
?t1?t2
a1 a2
Z b1 Z b2 Z b1 Z b2
f(t1, t2)?2g(t1, t2) f(a1,
t2)?2g(t1, t2)
= dt1dt2 + dt1dt2
?t1?t2 ?t1?t2
a1 a2 a1 a2
2
a
Z b1 Z b
+
a1 2
=
Z b1 Z b2
a1 a2
f(t1, a2)?2g(t1, t2) dt1dt2 + f(a1,
a2)g ([a1, b1] × [a2, b2]) ?t1?t2
Z b2 ~
f(t1, t2)?2g(t1, t2) ~?g(b1, t2) -
?g(a1, t2)
dt1dt2 + f(a1, t2) dt2
?t1?t2 ?t2 ?t2
a2
Z b1 ~?g(t1, b2) ~
- ?g(t1, a2)
+ f(t1, a2) dt1 + f(a1, a2)g ([a1, b1] × [a2, b2])
?t1 ?t1
a1 4
From the previous reasoning we have
~~Z b1 Z b2 ~~~~
~f(t1, t2)?2g(t1, t2)
~ dt1dt2
?t1?t2
a1 a2
= C(ái,
âi)kfkT,á1,á2kgkT,â1,â2(b1 -
a1)á1+â1(b2 - a2)á2+â2.
(2.9)
Next by using (1.2) we have
|J2| =
|
~~Z b2
~~
a2
|
r?g(b1, t2) ?g(a1, t2) 1 dt2
[f (a1, t2) - f(a1, a2)] ?t2 - ?t2
|
+ |f(a1, a2)g ([a1, b1] × [a2, b2])|
= C(ái, âi) kf(a1, .)1[a2,b2],á2
kg(b1, .) - g(a1, .)k[a2,b2],â2 (b2 - a2)1+å2
+ |f(a1, a2)| 1g1T,â1,â2(b1 -
a1)â1(b2 - a2)â2,
so that
11J211ái,âi)11g1IT,â1,â2
{11f(a1,.)1[a2,b2],á2 (b1 -a1)â1(b2
-a2)1+å2 + |f (a1, a2)| (b1 - a1)â1(b2 -
a2)â2}.
(2.10)
Similarly
11J311 = C(ái, âi)11g11T,â1,â2{11f(.,
a2)k[a1,b1],á1 (b1 - a1)1+å1(b2 -
a2)â2 +|f(a1, a2)|(b1 - a1)â1(b2 -
a2)â2}.
(2.11)
Replacing (2.10) and (2.11) in (2.8) we obtain (2.2). Next we
have
Z b1 Z b2 X
IÄ = f(u1, u2)dg(u1, u2) - f(si, tj)g ([si, si+1] ×
[tj, tj+1])
a1 a2 i,j
X=
[f(u1, u2) - f(si,tj)] dg(u1,u2)
Z si+1 Z tj+1
i,j
X=
si tj
Z si+1 Z tj+1
si tj
[f(u1, u2) - f(u1, tj) - f(si, u2) + f(si,tj)] dg(u1,u2)
i,j
+E
Z si+1 Z tj+1
i,j
+E
si tj [f(u1, tj) - f(si,tj)] dg(u1, u2)
Z si+1 Z tj+1
i,j
= I1 Ä+
I2Ä + I3 Ä.
si tj [f(si, u2) - f(si,tj)] dg(u1, u2)
(2.12)
From (2.1) it follows that
|I1Ä| =
ClIfIlT,á1,á211g1IT,â1,â2E
i,j
|
(si+1 - si)á1+â1(tj+1 -
tj)á2+â2
|
(2.13)
|
=C1kfkT,á1,á2kgkT,â1,â2kÄMá1+â1+á2+â2-2.
Next define
Then (1.2),(1.3) imply
= E
= E
Z b1
i,j X ~?g(u1, tj+1)?g(u1,tj)] = f1(u1,
tj)du1
?u1 ?u1
a1j
Z si+1 Z tj+1 [f(u1, tj) - f(si, tj)]
?2g(u1, u2) du1du2
?u1?u2
i,j si tj
[f (u1 , tj) - f (si, tj)] ?u1
? g (u1 , tj+1) ?g(u1 1 tj)1
du1
?u
Z si+1
si
~~I2 ~~ = C Z b1 kf1(u1, .)k[a2,b2],á2 kg(u1,
.)k[a2,b2],â2 du1. (2.14)
Ä
a1
Since u1 ? [si, si+1) we have
kf1(u1, .) [a2,b2],á2 = 1f1T,á1,á2 (u1 -
si)á1 = IfkT,á1,á2 kÄká1
and
Mg(u1,.)1[a2,b2],â2 = (b1 - a1)â1
,gkT,â1,â2 + 1g(a1,.)1[a2,b2],â2 (2.15)
It follows by replacing in (2.14) that
~|I2 Ä| =
C1kfkT,á1,á2kÄká1 ~ kgkT,â1,â2 + kg(a1,
.)k[a2,b2],â2 . (2.16)
Similarly
~|I3 Ä| =
C1kfkT,á1,á2kÄká2 ~ kgkT,â1,â2 + kg(.,
a2)k[a1,b1],â1 . (2.17)
Finally using (2.13),(2.16) and (2.17) in (2.12) we (2.2).
Next we define CT,á1,á2,8 the space
CT,á1,á2 endowed with the norm
kxkT,á1,á2,8 = 1x18+ sup
a1=t1=b1
kx(t1, .) [a2,b2],á2+ sup
a2=t2=b2
1x(., t2)1[a1,b1],á1+1xIT,á1,á2.
The space (CT,á1,á2,8, k.kT,á1,á2,8)
is a Banach space.
The convergence of Riemann-Stieltjes sums to the integral for
Hölder functions of one variable in shown in [[4],[15],[16]]. The
corresponding result for functions of two variables is given in the next
theorem.
Theorem 2.1.1. Let T0 = [a1 - å0, b1 + å0] × [a2
- å0, b2 + å0], å0 > 0, and let
á1, á2, â1, â2 ? (0, 1] be such that
ái + âi > 1. If f ?CT0,á1,á2, g ?
CT0,â1,â2,
Z b1 Z b2
a1 a2
every sequence of partitions Än =
(sni ,tnj ), a1 = s0 < ... <
sk(n) = b1, a2 = t0 < ... < tk(n) = b2, with
1Än1 ? 0, the Riemann-Stieltjes sums
then there exists a unique real number f(u, v)dg(u, v) such that
for
Sog= E
i
|
X~ × ~tn ~~ ,
f(sn i , tn j )g ~~sn i , sn j , tn
i+1 j+1
j
|
Z b1 Z b2
converge to f(u, v)dg(u, v). Moreover, the following estimate
holds:
a1 a2
/b1 f
a f (u, v)dg(u, v) f - a1)â1(b2 -
a2)â2.
1 a2
(2.18)
Proof. It is enough to prove that for every ä > 0
there exist ç > 0 such that for every two partitions (Äi)i=1,2,
ai = ui0 < ... < uim(i) = bi with kÄik <
ç we have
S ,f4 - = ä. (2.19)
Let J ? C°°(R2) be such that J =
0, J(x) = 0 if 114 = 1 and J(x)dx = 1
R2
and define Jå(x) = å-2 J
(x). Consider the regularizations of få,
gå of f,g. å
Recall that
få(x) =R Jå(x -
y)f(y)dy = f (x - åy)J(y)dy,
2
and for gå similarly (as usual f,g are extended
as 0 on R2 \ T0). It is well known that få ?
f,gå ? g uniformly on T. Also it is easily seen that
få ? CT,á1,á2, gå ?
CT,â1,â2.
Next we show that if 0 < á0i <
ái, 0 < â0 i < âi, then
få ? f in CT,á0 (2.20)
1,á0 2, gå ? g in
CT,â0 1,â0 2,
få(a1, .) ? f(a1, .) in
C[a2,b2],á02,
gå(a1, .) ? g(a1, .) in C[a2,b2],â0
2, (2.21)
få(., a2) ? f(., a2) in
C[a1,b1],á'1,
gå(.,a2) ? g(., a2) in
C[a1,b1],â01. (2.22)
We have
(få - f) ([s1,t1] × [s2, t2]) =
J(u,v){f([s1 - åu, t1 - åu] × [s2 - åv, t2 -
åv])
(0,1)
and then for every å, ä > 0,
sup
si6=ti
|(få - f) × [s2, t2])|
|s1 - t1|á01|s2 - t2|á02
= sup
|
{ | (få - f)([s1,t1]×
[s2,t2])|
, |si - ti| > ä, i = 1,2}
- t1|á4|s2 - t2|á4
|
+ sup {|(få - f)([s1,t1] ×
[s2,t])|
2 , |s1 - t1| > ä or |s2 - t2| > ä
|s1 - t1|á0 1|s2 - t2|á0
1
= sup {|f(u1, v1) - f (u2, v2)| , |ui- vi|< å, ? T0, i
= 1, 2}
äá1+á2
- f ([s1, t1] × [s2, t2])} dudv,
? 0 as å ? 0,ä ? 0.
+CU max(äá1-á'1, äá2-á2)
Similarly one prove(2.21),(2.22).
Next we choose 0 < á0i <
ái, 0 < â0 i < âi with
á0i + â0 i> 1. Then
from (2.20),(2.22) and (2.12) we obtain
~~~~~ - =f ,gå +
Ä1 Ä2 ,g - SfeSf,g -
Sfå,gå
Ä2 Ä2
+Saf-å;gå- fb1 b2
dgå Skfå - fådgå
d
b1 b2
a,
1
a
2
fa
1
a
2
=- S;t6,.å;gå + - S
kfå
+C (II fåIIT,á4,á4 + IlgålITAA) {(1 +
11Ä21e+â1+á4+%-2
+ + 11Ä21)á4 + (llÄ1ll +
11Ä21e}
=
f,g-
S;t6,.å;gå + -
gå
st
+C1 {(11Ä1ll +
11Ä211)á4+â1+á4+â?2 +
(11Ä1ll + 11Ä211)á4
+ (kÄ1k + kÄ21)á02o ?0,
as å ? 0 and then IÄiI ? 0. The previous computation
also shows that
lim b1b2 b1b2
fådgå =
f dg,
å?0
la
1
12
2
1
1
12
2
and this fact and(1.2) imply (2.18).
28 2.1 Pathwise Integration in Two-parameter Besov Spaces
Chapter 3
Existence and Uniqueness of the
Solutions of SDE with
Two-Parameter Fractional
Brownian Motion
Next for K > 0 we define the closed sets
C[a,b],H(K) = {(P ? C[a,b],H :1(PI[a,b],H =
K}, and for (Pi ? C[ai,bi],ái,
(
CT,á1,á2,00(K, (P1, (P2) = x ?
CT,á1,á2,00 : x(a1, .) = (P1, x(., a2) = (P2,
Ix1T,á1,á2 = K,
sup
a1<t1<b1
|
kx(t1, .)I[a2,b2],á2 = K,
a2<sut2p<b2
|
}11x(., t2) 11 [a1 ,b1],á1 = K .
|
By using the Hölder spaces of functions we obtain the
following local contraction property of an integral operator between such
spaces, which is useful in the next existence and uniqueness result.
Proposition 3.1. Let â1, â2 ? (1/2, 1] and
á1, á2 be such that âi > ái > 1 -
âi.Let g ? CR2,â1,â2 and b, ó : R ? Rbe
such that b is bounded and Lipschitz and ó ?
C2b(R) with ó" Lipschitz. Then for
every K > 0 and ai, bi ? R,ai < bi, i = 1, 2, there exists
å0 > 0 independent of ai, bi, such that for every (Pi ?
C[ai,ai+å0],ái(K) the operator
F :
C[a1,a1+å0]x[a2,a2+å0],á1,á2,00(2K, (P1,
(P2) ? C[a1,a1+å0]x[a2,a2+å0],á1,á2,00(2K, (P1,
(P2)
defined by
Existence and Uniqueness of the Solutions of SDE with
30 Two-Parameter Fractional Brownian Motion
Z s Z t Z s Z t
(F x)s,t = ?1(s) + ?2(t) + b(xu,v)dudv +
ó(xu,v)dg(u, v),
a1 a2 a1 a2
is a contraction.
Proof.(We refer to read [8] for more detail.) Clearly we have
~ ~ ~ ~
|
Z . Z .
a1 a2
|
~ ~
b(xu,v)dudv ~ = kb18(b1 -
a1)1-á1(b2 - a2)1-á2
~T,á1,á2,8
× [(b1 - a1)á1(b2 -
a2)á2 + 1] .
|
(3.1)
|
By using (2.18) it follows
~ Z.
~Z.
~~
a1a2
|
~ ó(xu,v)dg(u, v) ~=
(x)11T,á1,á2,811g11T,â1,â2
T,á1,á2,8
|
×(b1 - a1)â1?á1(b2 -
a2)â2?á2 [(b1 - a1)á1(b2 -
a2)á2 + 1] . (3.2)
Next
ó(x) ([s1, t1] × [s2, t2]) = (xt1,t2 - xt1,s2)
-(xs1,t2 - xs1,s2)
ó0 (ëxt1,t2 + (1 - ë)xt1,s2)
dë ó0 (ëxs1,t2+ (1 - ë)xs1,s2) dë
1
J
0 1
Z0
Z0 1 ó0 (ëxt1,t2 + (1 - ë)xt1,s2) dë
Then
ó(x) ([s1, t1] × [s2, t2]) = (xt1,t2 - xt1,s2 -
xs1,t2 + xs1,s2)
Z 1
+(xs1,t2 - xs1,s2) [ó0 (ëxt1,t2
+ (1 - ë)xt1,s2)
0
-ó' (ëxs1,t2 + (1 -
ë)xs1,s2)] dë.
(3.3)
Then (3.3) implies
{|ó(x) ([s1, t1] × [s2, t2])| =
1ó1181x1T,á1,á2 + Ió'IL1x(s1,
.)1[a2,b2],á2
)
Z 1 ~ dë
× ~ëkx(., t2)k[a1,b1],á1 + (1 -
ë)kx(., s2)k[a1,b1],á1
(t1-s1)á1(t2-s2)á1,
0
Existence and Uniqueness of the Solutions of SDE with
Two-Parameter Fractional Brownian Motion 31
and hence, if x ? CT,á1,á2,8(K, ?1, ?2), then
Ió(x)1T,á1,á2 = K
(1ó118 + kó0kL) .
(3.4)
From (3.2),(3.2) and (3.4) it follows that
Fx ? C[a1,b1]×[a2,b2],á1,á2,8
a
if x ? C[a1,b1]×[a2,b2],á1,á2,8nd also for
å1 > 0 enough small, Fx ?
C[a1,a1+å1]×[a2,a2+å1],á1,á2,8(2K, ?1, ?2) if
x ? C[a1,a1+å1]×[a2,a2+å1],á1,á2,8(2K, ?1,
?2).
Next we have
[ó(x) - ó(y)] ([s1, t1] × [s2, t2])
1
= (x - y)([s1,t1] × [s2, t2]) J ó0 (ëxt1,t2 + (1
- ë)yt1,t2) dë
+[(xs1,t2 -ys1,t2) -(xs1,s2 -ys1,s2)]
1
0
Z× [ó0 (ëxt1,t2 + (1 -
ë)yt1,t2) - ó0 (ëxs1,t2 + (1 - ë)ys1,t2)] dë
0 Z
1
+(xs1,s2 - ys1,s2) [ëx ([s1, t1] × [s2, t2]) + (1 -
ë)y ([s1, t1] × [s2, t2])]
Z 1 0
× ó00 (u(ëxt1,t2 + (1 - ë)yt1,t2) +
(1 - u) (ëxs1,t2 + (1 - ë)ys1,t2)) dudë
+(
Z
× [ó00 (u (ëxt1,t2 + (1 -
ë)yt1,t2) + (1 - u) (ëxs1,t2 + (1 - ë)ys1,t2))
0
-ó" (u (ëxt1,s2 + (1 -
ë)yt1,s2) + (1 - u) (ëxs1,s2 + (1 - ë)ys1,s2))] dudë.
(3.5)
0 Z 1 xs1,s2 - ys1,s2) [ë(xt1,s2 - xs1,s2) + (1 -
ë)(yt1,s2 - ys1,s2)] 0 1
If x, y ?
C[a1,a1+å1]×[a2,a2+å1],á1,á2,8(K, ?1, ?2), then
(3.5) yields
kó(x) -ó(y)1T,á1,á2 = C (K,
kól8, MótkL, kóitkL)
Mx - ylT,á1,á2. (3.6)
From (3.1), (3.2) and (3.6) it follows that there exists å2
> 0 enough small, independent of ai, bi, such that
11F
x-Fyl[a1,a1+å2]×[a2,a2+å2],á1,á2,8 =
dlx-yl[a1,a1+å2]×[a2,a2+å2],á1,á2,8, (3.7)
for some 0 < d < 1, and hence, denoting å0 =
min(å1, å2), we obtain that
Existence and Uniqueness of the Solutions of SDE with
32 Two-Parameter Fractional Brownian Motion
F :
C[a1,a1+å0]x[a2,a2+å0],á1,á2,00(2K, ?1, ?2) ?
C[a1,a1+å0]x[a2,a2+å0],á1,á2,00(2K, ?1, ?2)
is a contraction. 111
An existence and uniqueness result for ordinary differential
equations with Hölder continuous forcing is obtained in [11]. The global
solution is constructed, first in small time interval, when the contraction
principle can be applied, by using estimates in terms of Hölder norms. For
the two-parameter case we have the following result.
Theorem 3.1. Let â1, â2 ? (1/2, 1] and á1,
á2 be such that âi > ái > 1- âi. Let g ?
CR2,â1,â2 and b, ó : R ? R be such that b is
bounded and Lipschitz and ó ? C2 b (R) with ó"
Lipschitz. Then for every a1 < b1, a2 < b2 and ?i ?
C[ai,bi],ái with ?1(a1) = ?2(a2), the equation
t
x st=?1(s) ? 2(t) - ?1 (a1) + f i
b(xu,v)dudv
l a
2
(3.8)
+ Is ft
ja1 ó(xu,v)dg(u,v), (s, t) ? T,
has a unique solution in CT,á1,á2,00.
Proof. Let K > 0 be such that ?i ? C[ai,bi],ái(K). Then
from Proposition 3.1 we obtain the existence of the solution x of (3.8) on the
rectangle
[a1, a1 + å0] × [a2, a2 + å0], å0
independent of ai, bi (but dependent on K). If a1 + å0 < b1,
let n0 be the biggest integer such that n0å < b1. Then x ?
CT,á1,á2,00(2K) and inductively we obtain the existence of the
solution on
[a1 + å0, a1 + 2å0] × [a2, a2 + å0], ...,
[a1 + n0å0, b1] × [a2, a2 + å0], and then on
[a1, a1 + å0] × [a2 + å0, a2 + 2å0], ...,
[a1 + n0å0, b1] × [a2 + å0, a2 + 2å0],
and continuing again by induction we obtain the existence on T
. Let now x1, x2 be two solutions of (3.8). In particular, there is K > 0
such that x1, x2 ? CT,á1,á2,00(K). From (3.7) we deduce the
existence of å0 > 0 (which does not depend on ai, bi) and 0 < d
< 1 such that
1x1 - x21[a1,a1+å0]x[a2,a2+å0] = d1x1 -
x21[a1,a1+å0]x[a2,a2+å0],
and therefore x1 = x2 on [a1, a1 + å0] × [a2, a2 +
å0].Inductively (see the existence part) we obtain that x1 = x2 on T.
111
Existence and Uniqueness of the Solutions of SDE with
Two-Parameter Fractional Brownian Motion 33
Theorem 3.2. Let (BHt )tE[0,1]2 be a
two-parameter fractional Brownian motion with Hi ? (1/2,1) and let
ái,âi > 0 be such that 1/2 < âi < Hi,
âi > ái > 1-âi, i = 1, 2. Let b,
ó : R ? R be such that b is bounded and Lipschitz and ó ?
C2b (R) with ó" Lipschitz and let be
the processes {?i(t)}tE[0,1] such that almost surely ?1(0) = ?2(0) and
?i ? C[0,1],á,. Then with probability one the stochastic
equation
s t
Xs,t = ?1(s) + ?2(t) - ?1 (0) + b(Xu,v)dudv
f
0 0 (3.9)
+ 1s ft
0 ft (s,t)? [0,1]2,
has a unique solution {Xu,v}(u,v)E[0,1]2 with the
paths in C[0,1]2,á1,á2,00.
Proof. From the Kolmogorov criterion (see [2, 7]) it follows that
BH has â-Hölder paths, i.e., there exists a random
variable C such that for all ù ? Ù
2
(BH ([t, s])) (ù) ~~ = C(ù)
|
II
j=1
|
(sj - tj)â' . (3.10)
|
s pt
Therefore almost surely we have by Theorem 2.1.1 and (3.10) that
the Stieltjes integral
10 0 f (u, v)dBuH,v
is well defined for f ? C[0,1]2,á1,á2.
Now the result is a consequence of Theorem 3.1 applied pointwise.
Existence and Uniqueness of the Solutions of SDE with 34
Two-Parameter Fractional Brownian Motion
Bibliography
[1] M. ARcoNEs, On the law of iterated logarithm for Gaussian
processes, JouRNAL of ThEoRETicAL PRobAbiLiTy 8 (4) 877-904 (1995).
[2] A. AyAchE, S. LEgER, M. PoNTiER, Drap brownian
fractionnaire,PoTENTiAL ANAL. 17 31-43 (2002).
[3] G. DA PRATo, J. JAbczyk, Ergodicity for infinte dimensional
systems, CAmbRidgE UNivERsiTy PREss,(1993).
[4] D. FEyEL, A. DE LA PRAdELLE, On fractional Brownian
processes, PoTENTiAL ANAL. 10 273-288 (1999).
[5] A.KAmoNT,On the fractional anisotropic Wiener field, PRobA.
MATh. STAT., 16, 85-98 (1996).
[6] F. KLiNgENhöfER, M. ZähLE, Ordinary differential
equations with fractal noise, PRoc. AmER. MATh. Soc. 127 1021-1028(1999).
[7] S. LEgER, M. PoNTiER, Drap brownian fractionnaire,C. R.
AcAd. Sci. PARis 329 893-898 (1999).
[8] Y. MAshuRA, Stochastic calculus for fractional Brownian
motion and related processes, SpRiNgER-VERLAg BERhim HEidELbERg (2008).
[9] B. MAsLowski, D. NuALART, Evolution equations deriven by
fractional Brownian motion, J. FuNcT. ANAL. 202 277-305 (2003).
[10] D. NuALART, A. RAscANu, Differential equations driven by
fractional Brownian motion, CoLLEcT. MATh. 53 55-81 (2002).
[11] A.A. RuzmAikiNA, Stieltjes integrals of Hölder
continuous functions with applications to fractional Brownian motion,J. STAT.
Phys. 1000 1049-1069 (2000).
[12] S.G. Samko, A.A. Kilbas, O.I. MarichEv, Fractional
Integrals and Derivatives. Theory and Applications, Gordon and BrEach SciEncE
PublishErs, NEw York (1993).
[13] A.D. VEnttsEl,A course in the theory of stochastic
processes, McGraw Hill, NEw York (1981).
[14] J. YEh, CamEron-Martin, Translation theorems in the
Wiener space of functions of two-variables,Trans. AmEr. Math. Soc. 107 409-420
(1963).
[15] L.C. Young, An inequality of the Hölder type connected
with Stieltjes integration, Acta Math. 67 251-282(1936).
[16] M. ZählE, Integration with respect to fractal
functions and stochastic calculus I,Probab.ThEory RElatEd FiElds 111 333-374
(1998).
|
|