WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Using the WACC methodology to improve the assessment of projects in the french farming industry. Empirical evidences from farm's results of Isère

( Télécharger le fichier original )
par Anaël BIBARD
Grenoble Graduate School of Business - MBA 2012
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Conclusion

The WACC methodology tested in this research presents real limitations due to its underlying theories based on the market efficiency. This assumption holds only for the listed companies, introducing a bias in the calculation presented in this paper. However, the results obtained are consistent with the initial expectations regarding the relationship between leverage and financial performance or financial distress. Therefore, consultants should take more consideration for this methodology and use it in their feasibility studies.

The other achievement of this paper concerns the discount rates actually used by practitioners. All signs clearly indicate that many of them use abnormally low actualization rates, ranging from 2.5 to 4.5%. The impact of these low actualization rates in valuation methods, such as the profitability method, can be really important. The NPV of a farm can be over-estimated by two to four using such discount factors! Some consultants use more appropriate rates, but it is far from being a generality according to the results of the survey.

Then, it appears clearly that leverage has a positive impact on the financial performance of the farms of Isère. These expected results confirm that the WACC methodology should hold in the context of small and medium farming business. Therefore, consultants should consider the capital structure of the farms into consideration not only to avoid the risk of financial distress, but also to look for the optimal leverage, which appears to range between 40 and 60%. From the results presented in this paper, the 60-80% leverage group presented really good performances, but also more variability. Moreover, the bankruptcy risk was not studied because a sample of farms studied had to be constant. Therefore, it is safer to consider that the optimal debt level lies in the group 40-60%, may be closer to 60% regarding the good performance of the 60-80% group, particularly for the dairy specialization.

Finally, the consultants of the CERFRANCE Isère do not need to wait for other researches on the field to modify their methods. Main recommendation is to increase significantly their actualization rates. On the other side, it must be acknowledge that further researches on the topic are necessary to improve the methodology and determine more precisely the hypothesis that should be taken, regarding the risk premiums and the beta for example. The productivity constraints of the consultants working in the different CERFRANCE militate in favor of a partnership with the engineering schools specialized in agriculture. This partnership, already implemented in some schools, could be the starting point of others researches about the financial performances of farming businesses.

Bibliography

Agreste. (2011 b). Agreste Primeur, France Métropolitaine, Recensement agricole 2010. Montreuil Sous Bois: Agreste.

Agreste. (2011). Commerce extérieur agroalimentaire. Agreste Conjoncture , 2 (12), pp. 1-5.

Agreste. (2010). Memento de la statistique agricole. Retrieved 03 23, 2012, from www.agreste.agriculture.gouv.fr: http://www.agreste.agriculture.gouv.fr/reperes/memento-de-lastatistique-agricole/

Agreste. (2011, September). Mémento de la statistique agricole. Retrieved May 28, 2012, from www.agreste.agriculture.gouv.fr: http://www.agreste.agriculture.gouv.fr/IMG/pdf_R8212C01.pdf

Agreste. (2011 c). Premiers résultats en Isère. Agreste Rhône Alpes, Coup d'Oeil , 129, 4 p.

Al-Rjoub, S., Varela, O., & Hassan, M. (2005). The size effect reversal in the USA. Applied Financial Economics , 15 (17), 1189-1197.

Ambassade de France à Washington. (2009). Les Etats Unis en chiffre. Washington DC: République Française.

AREC. (2011). la méthanisation en Poitou-Charentes - Enjeux et perspectives. Retrieved March 29, 2012, from www.arecpc.com: www.arecpc.com/f245_la_methanisation_en_poitou_charentes_enjeux_et_perspectives.html

Barry, P. J. (1980a). Capital Asset Pricing and Farm Real Estate. American Agricultural Economics Association , 62 (3), 549.

Barry, P. J. (1981). Capital Asset Pricing and Farm Real Estate: Reply. American Agricultural Economics Association , 63 (3), 580.

Barry, P. J. (1980b). Financial Impacts of Government Support Price Programs: Comment. American Journal Of Agricultural Economics , 62 (3), 599-604.

Bergstrom, G., Frashure, R., & Chisholm, J. (1991). The Gains from international small-company in Global Portfolios: Quantiative Strategies for Maximum Performance. Homewood: R.Z. Aliber and B.R. Bruce, Business One Irwin.

Bhardwaj, R. K., & Brooks, L. D. (1993). DUAL BETAS FROM BULL AND BEAR MARKETS: REVERSAL OF THE SIZE EFFECT. Journal of Financial Research , 16 (4), 269-284.

Binder, J. J. (1992). BETA, FIRM SIZE, AND CONCENTRATION. Economic Inquiry , 30 (3), 556-563.

Birner, R., Davis, K., Pender, J., Nkonya, E., Anandajayasekeram, P., & Ekboir, J. (2009). From best practice to best lit: a framework for designing and anlyzing pluralistic agricultural advisory services worldwide. Journal of Agricultural Education and Extension , 15, 341-355.

Borrel, B., & Hubbard, L. (2000). Global Economic Effects of the EU Common Agricultural Policy. Economic Affaris , 20 (2), 18-26.

Brealey, R. A., Myers, S. C., & Allen, F. (2008). Principles of corporate finance (Ninth international edition ed.). New York: McGraw Hill.

Breisinger, C., Ecker, O., & Al-Riffai, P. (2011). Economie du Printemps Arabe. De la révolution à la transformation et la sécurité alimentaire. Politiques alimentaires en perspective , 18, 2-4.

Carter, C. (1981). Capital Asset Pricing and Farm Real Estate: Comment. American Agricultural Economics Association , 63 (3), 578.

CCI Rhône Alpes. (2011). Les Chiffres Clés de l'Isère, édition 2010-2011. Grenoble: Chambre de Commerce et d'Industrie de Grenoble.

Chambers, R. G. (1989). Insurability and Moral Hazard in Agricultural Insurance Markets. American Journal of Agricultural Economics , 85 (2), 604-616.

Chan, K., & Chen, N.-F. (1988). An Unconditional Asset-Pricing Test and the Role of Firm Size as an Instrumental Variable for Risk. Journal of Finance , 43 (2), 309-325.

Claus, J., & Thomas, J. (2001). ). Equity Premia as Low as Three Percent? Evidence from Analysts' Earnings Forecasts for Domestic and International Stock Markets. Journal of Finance , 56 (5), 1629- 1666.

Clipici, E. (2011). Directions of Common Agricultural Policy. Agricultural Management , 13 (1), 173- 178.

CNCER. (2012, February). CERFRANCE, conseil et expertise comptable. Retrieved June 30, 2012, from www.reseau-cerfrance.fr: http://www.reseau-cerfrance.fr/emploi-formation/?p=jeunes-diplomes

Coface. (2011). Observatoire des défaillances. Retrieved May 28, 2012, from www.coface.fr: http://www.coface.fr/CofacePortal/ShowBinary/BEA%20Repository/FR_fr_FR/documents/observato ire/observatoire-des-defaillances.pdf

Damgé, M. (2012, July 20). Sécheresse aux Etats-Unis, les cours des céréales flambent. Retrieved July 21, 2012, from www.lemonde.fr: http://www.lemonde.fr/economie/article/2012/07/20/secheresseaux-etats-unis-les-cours-des-cereales-flambent_1736460_3234.html?xtmc=cereales&xtcr=1

Damodoran, A. (2011, February 23). Equity Risk Premiums (ERP): Determinants, Estimation and Implication? Retrieved June 23, 2012, from Social Science Research Network: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1769064

Dimson, E., & Marsh, P. (2001). U.K. Financial Market Returns, 1955-2000. Journal of Business , 74 (1), 1-31.

Direction Générale des Impots. (2006, November). fiche descriptive 4166. Retrieved June 20, 2012,
from www.impots.gouv.fr:
http://www.impots.gouv.fr/portal/deploiement/p1/fichedescriptive_4166/fichedescriptive_4166.pdf

Dobson, P. (2012, May 25). French 10-Year Government yield drops to to record low 2,422. Retrieved June 03, 2012, from www.bloomberg.com: http://www.bloomberg.com/news/2012-05-25/french10-year-government-bond-yield-drops-to-record-low-2-422-.html

Dongcheol, K. (1993). The Extent of Nonstationarity of Beta. Review of Quantitative Finance & Accounting , 3 (2), 241-254.

Drew, M. E., & Veeraraghavan, M. (2003). Beta, Firm Size, Book-to-Market Equity and Stock Returns. Journal of the Asia Pacific Economy , 8 (3), 354-380.

Elekes, A., & Halmai, P. (2009). The "Hottest Topic" of the budgetary review: Will the CAP survive? Intereconomics , 44 (5), 300-308.

Evans, G. (2008, August 4). N.Z. Forecasts. Retrieved March 29, 2012, from www.bloomberg.com: http://www.bloomberg.com/apps/news?pid=newsarchive&sid=a4O5KrquIb90

FAO. (2012, February 23). FAOSTAT. Retrieved March 23, 2012, from faostat.fao.org: http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor

FAO. (2012). Major food and agricultural commodities producers. Retrieved March 29, 2012, from www.fao.org: http://www.fao.org/es/ess/top/commodity.html?item=1012&lang=en&year=2005

Faure, G., & Compagnone, C. (2011). Les Transformations du conseil face à une nouvelle agriculture. Cahiers de l'Agriculture , 20 (5), 321-326.

Faure, G., Desjeux, V., & Gasselin, P. (2011). Revue Bibliographique sur les recherches menées dans le monde sur le conseil en agriculture. Cahiers de l'Agriculture , 20 (5), 327-342.

Fernandez, P. (2010, November 16). Retrieved June 30, 2012, from Social Science Research Network: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1473225

Gangwar, L., Singh, D., & Mandal, G. (2008). Economic Evaluation of Peach Cultivation in North Indian Plains. Agricultural Economics Research Review , 21 (1), 123-129.

Gardner, B. L. (1994). Liberalization in New-Zealand agriculture: Discussion. American Journal of Agricultural Economics , 76 (5), 1053.

Hanson, S. D., & Myers, R. J. (1995). Testing for a time-varying risk premium in the returns to U.S. farmland. Journal of Empirical Finance , 2 (3), 265-276.

Harwood, J., Heifner, R., Coble, K., Perry, J., & Somwaru, A. (1999). Managing Risk in Farming: Concepts Research and Analysis. Agricultural Economic Report , 774.

Hénin, F. (2011, August 30). Fin des quotas laitiers - PAC 2015 - Projet européen des JA - Elevagenet.fr. Retrieved March 31, 2012, from www.web-agri.fr: http://www.web-agri.fr/actualite-agricole/politique-syndicalisme/article/le-projet-europeen-de-ja-pour-installer-et-maintenir-du-lait-sur-tout-le-territoire-1145-73874.html

Hénin, F. (2011, December 10). Impact de la fin des quotas sur les accords de prêts aux éleveurs. Retrieved April 01, 2012, from www.web-agri.fr: http://www.web-agri.fr/actualite-
agricole/economie-social/article/les-banques-apprennent-a-travailler-avec-la-fin-des-quotas-1142- 76501.html

Hénin, F. (2012, March 26). Réforme de la PAC - DPU - Verdissements. Retrieved March 27, 2012, from www.terrenet.fr: http://www.terre-net.fr/actualite-agricole/politique-syndicalisme/article/le-nouveau-calcul-des-paiements-directs-portera-sur-55-de-l-enveloppe-des-soutiens-publics-affectes-205-79048.html

Holzman, & Jorgensen. (2001). Social Risk management: A New conceptual framework for social protection, and beyond. International Tax and public Finance , 8, 529-556.

Howarth, R. (2000). The CAP: History and attempts at reform. Economic Affairs , 20 (2), 4.

IMF.Stat. (2012, 03 23). Principal Global Indicators. Consulté le 03 23, 2012, sur www.principalglobalindicators.org: http://www.principalglobalindicators.org/default.aspx

Israelsen, C. (2009). The Value Premium. Financial Planning , 39 (6), 108-110.

Jegadeesh, N. (1992). Does Market Risk Really Explain the Size Effect? Journal Of Financial & Quantitative Analysis , 27 (3), 337-351.

Johnson, M. R. (2002). Kansas's Agricultural Use Value Method. Assessment Journal , 9 (3), 23-29.

Laur, P. (2010). Le Beta varie-t-il pour de bonnes raisons ? L'influence des caractéristiques spécifiques des firmes et du contexte macroéconomique sur le coefficient de risque systématique ß. Retrieved July 10, 2012, from www.vernimmen.net: http://www.vernimmen.net/ftp/Memoire_Pierre_Laur.pdf

Le Boulanger, A. (2011, November 29). La PAC 2014 au coeur des crises. Retrieved January 15, 2012, from www.cerfrance.fr: http://www.cerfrance.fr/blog-agri/2011/11/29/la-pac-2014-au-coeur-descrises/

Le Monde.fr. (2007, February 27). L'inflation française est restée mesurée en 2006. Retrieved June 20, 2012, from www.lemonde.fr: http://www.lemonde.fr/economie/article/2007/01/12/l-inflationfrancaise-est-restee-mesuree-en-2006_854975_3234.html

Leonard, S. (2009). U.S. Equity Returns After Major Market Crashes. Journal of Financial Planning , 22 (10), 84-94.

Miranda, M., & Glauber, J. (1997). Systemic Risk, Reinsurance, and Failure of Crop Insurance Markets. American Journal of Agricultural Economics , 79, 206-215.

Momagri. (2012b, June 26). Another CAP is possible. Retrieved July 21, 2012, from
www.momagri.org: http://www.momagri.org/PDF/momagri-GB-autre-PAC-est-possible-26-06-12.pdf

Momagri. (2012, February 27). France is gradually losing its place among major agricultural export powerhouses. Retrieved April 02, 2012, from www.momagri.org:
http://www.momagri.org/UK/agriculture-s-key-figures/France-is-gradually-losing-its-place-amongmajor-agricultural-export-powerhouses-_1058.html

Moravcsik, A. (1999). Le grain et la grandeur : les origines économiques de la politique européenne du général de Gaulle (1ère partie). Revue Française de Science Politique , 49 (4-5), 507-544.

Mundler, P., Labarthe, P., & Laurent, C. (2006). Les disparités d'accès au conseil: le cas de la région Rhône-Alpes. Economie Rurale (291), 26-34.

Nartea, G., & Webster, P. (2008). Should farmers invest in financial assets as a risk management strategy? Some evidence from New Zealand. Australian Journal Of Agricultural & Resource Economics , 52 (2), 183-202.

OECD. (2009). Managing Risk in Agriculture: a Holistic Approach. Paris: Editions OCDE.

OECD. (2011). Risk management in agriculture. Retrieved November 10, 2011, from www.oecd.org: www.oecd.org/agriculture/policies/risk

OECD-FAO. (2010). Agricultural Outlook 2010-2019. Marston Gate: OECD.

Petit, M. (2006). L'exploitation agricole familiale: leçons actuelles de débats anciens. Cahiers Agricultures , 15 (6), 486-490.

Pinson, V. (2012, March 22). Fin des quotas laitiers: quels enjeux pour les abattoirs? Retrieved April 01, 2012, from www.lequotidienlesmarches.fr: http://www.lequotidienlesmarches.fr/marches/findes-quotas-laitiers-quel-enjeu-pour-les-abattoirs-art329564-39.html

Quiry, P., & Le Fur, Y. (2012). Finance d'Entreprise. Pierre Vernimmen 10ème édition. Paris: Dalloz.

Rhein, E. (2009, September 11). The UE needs a competitive dairy production. Retrieved March 31, 2012, from rhein.blogactiv.eu: http://rhein.blogactiv.eu/2009/09/11/the-eu-needs-a-competitivedairy-industry/

Rickard, S. (2001). Time to scrap the CAP? Accountancy , 128 (1298), 83.

Rose, F. (2008). A note on the role of investment capital in the US agricultural futures markets and the possible effect on cash prices. Groupe sur les céréales, les aliments du bétail et le sucre. OECD.

Salomons, R., & Grootveld, H. (2003). The equity risk premium: Emerging vs Developed Markets. Emerging Markets Review , 4, 121-144.

Sandrey, R. A., & Scobie, G. M. (1994). Changing international competitiveness and trade: Recent experience in New Zealand agriculture. American Journal Of Agricultural Economics , 76 (5), 1041.

Saunders, C., Wreford, A., & Cagatay, S. (2006). Trade Liberalisation and greenhouse gas emissions: the case of the dayring in the European Union and New-Zealand. Australian Journal of Agricultural & Resources Economics , 50 (4), 538-555.

Sharpe, W. F. (1964). Capital asset prices: a theory of market equilibrium under conditions of risk. Journal of Finance , 19 (3), 425-442.

Shomir, S., Pat, O., & Jeong-gil, C. (2011). FURTHER INVESTIGATION ON THE VARIABILITY OF INDIVIDUAL STOCK BETA AND PORTFOLIO SIZE. International Journal Of Business, Accounting, & Finance , 5 (1), 91-102.

Sminou, K. (2010). Stock Market and Agricultural Futures Diversification: An International Perspective. Journal Of Alternative Investments , 12 (4), 36-57.

Spencer, D. (2003). An agreement to deal. Economist , 368 (8337), 65.

Switzer, L. (2010). The behaviour of small cap vs. large cap stocks in recessions and recoveries: Empirical evidence for the United States and Canada. The North American Journal of Economics and Finance , 21 (3), 332-346.

terrenet.fr. (2012, January 31). mobilisation de la filière betterave contre la fin des quotas de production. Retrieved March 31, 2012, from www.terrenet.fr: http://www.terre-
net.fr/cours_marches_agricoles/article/la-filiere-betterave-se-mobilise-contre-la-reforme-europeenne-du-marche-du-sucre-1395-77463.html

Waintrop, M. (2010, August 18). Pourquoi le lait Allemand est-il moins cher que le Français. Retrieved March 15, 2012, from www.la-croix.com: http://www.la-croix.com/Actualite/S-
informer/Economie/Pourquoi-le-lait-allemand-est-moins-cher-que-le-francais-_NG_-2010-08-18- 555741

WTO. (2011). International Trade Statistics 2011. Geneva: World Trade Organization.

You, G. (2010, August 17). Institut de l'Elevage: une filière lait "low-cost". Retrieved March 20, 2012, from www.web-agri.fr: http://www.web-agri.fr/actualite-agricole/economie-social/article/lait-prixtroisieme-trimestre-filiere-allemande-low-cost-1142-64110.html

Zaharia, I., Tudorescu, N., & Zaharia, C. (2009). Have the Cap Reforms Delivered Significant Changes. Economics, Management & Financial Markets , 4 (2), 107-110.

 

Appendices

Appendix 1: Illustration of the database extraction. File name: "extraction 2006_1"

 
 

70

 

Appendix 2: Illustration of the database extraction, balance sheet information. File name: "extraction 2006_2"

 
 

71

Appendix 3: Questionnaire

L'objectif de cette enquête est d'avoir un aperçu des techniques utilisées par les conseillers d'entreprise agricole pour actualiser les flux. Les résultats de cette enquête seront analysés de manière anonyme, et seront utilisés dans le mémoire « L'utilisation du CMPC en vue d'optimiser l'évaluation du coût du capital dans les exploitations agricoles en France. Constatations empiriques à partir des résultats économiques d'exploitations Iséroises ». Une version électronique de ce mémoire pourra être distribuée aux personnes intéressées d'ici octobre.

Nom de votre compagnie: Age: Sexe:

Question 1: Quelle est votre profession ?

Question 2: Pouvez-vous décrire succinctement votre activité ?

Question 3: Dans le cadre de votre profession, rédigez vous des études prévisionnelles pour vos adhérents afin d'estimer la rentabilité de leurs projets ?

Question 4: est-ce que vous utilisez des taux d'actualisation pour évaluer la valeur d'une entreprise agricole ? (actualiser un flux perpétuel: flux prévisionnel reproductible / taux d'actualisation)

Question 5: Est-ce que vous utilisez la méthode de la Valeur Actuelle Nette (VAN) pour estimer la rentabilité d'un projet ? (projet photovoltaïque ou méthanisation par exemple)

Question 6: comment choisissez vous un taux d'actualisation ? Cochez les méthodes utilisées dans votre structure.

 

u ben e dhnt

Question 7: Dans quelle fourchette de pourcentage se situent les taux d'actualisation que vous utilisez principalement pour votre clientèle agricole ?

Question 8: Comment qualifieriez vous les méthodes utilisées dans votre structure pour comparer et évaluer des projets d'investissement ?

Question 9: Si l'on vient a vous proposer un outil pour estimer le coût moyen pondéré du capital des exploitations de votre région afin de l'utiliser comme taux d'actualisation, comment considéreriez vous cet outil ?

P-Value

Appendix 4: Normality test of the datasets for ROE, extraction from statgraphics

Uncensored Data - ROE

Data variable: ROEc

The Shapiro Wilk test for normality cannot be performed. Therefore we observed the data graphically, and considered that the data follow a normal distribution (density trace and histogram of frequency look normal).

2800 values ranging from -4,78806 to 4,81454 Fitted Distributions

Normal

mean = 0,0444249

standard deviation = 0,628166

The StatAdvisor

This analysis shows the results of fitting a normal distribution to the data on ROEc. The estimated parameters of the fitted distribution are shown above. You can test whether the normal distribution fits the data adequately by selecting Goodness-ofFit Tests from the list of Tabular Options. You can also assess visually how well the normal distribution fits by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Tests for Normality for ROEc

Den

Test

Shapiro-Wilk W

0,4

Statistic

Too much data

The StatAdvisor

This pane shows the results of several tests run to determine whether ROEc can be adequately modeled by a normal

03

distribution. The Shapiro-Wilk test is based upon comparing the quantiles of the fitted normal distribution to the quantiles of the data. The Shapiro-Wilk test was not performed because the sample size was greater than 2000.

Goodness-of-Fit Tests for ROEc Kolmogorov-Smirnov Test

 

Normal

DPLUS

0,187571

DMINUS

0,203456

DN

0,203456

P-Value

0,0

The StatAdvisor

This pane shows the results of tests run to determine whether ROEc can be adequately modeled by a normal distribution. Since the smallest P-value amongst the tests performed is less than 0,05, we can reject the idea that ROEc comes from a normal distribution with 95% confidence.

ce for RO

P-Value

Appendix 5: Normality tests of the datasets for ROA, extraction from statgraphics Uncensored Data - ROA by time

Data variable: ROA

Too much data for the Shapiro test. We do it visually, and we can conclude that it is normally distributed! 3046 values ranging from -4,37674 to 3,08145

Fitted Distributions

Normal

mean = 0,0569658

standard deviation = 0,485766

The StatAdvisor

This analysis shows the results of fitting a normal distribution to the data on ROA. The estimated parameters of the fitted distribution are shown above. You can test whether the normal distribution fits the data adequately by selecting Goodness-ofFit Tests from the list of Tabular Options. You can also assess visually how well the normal distribution fits by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Tests for Normality for ROA

Test

Shapiro-Wilk W

Statistic D

Too much data

The StatAdvisor

This pane shows the results of several tests run to determine whether ROA can be adequately modeled by a normal
distribution. The Shapiro-Wilk test is based upon comparing the quantiles of the fitted normal distribution to the quantiles of

0,3

the data. The Shapiro-Wilk test was not performed because the sample size was greater than 2000.

G

K

xn

oodness-of-Fit Tests for ROA olmogorov-Smirnov Test

,

 

Normal

DPLUS

0,148105

0,1

DMINUS

0,170935

DN

0,170935

P-Value

0

0,0

The StatAdvisor

This pane shows the results of tests run to determine whether ROA can be adequately modeled by a normal distribution.

Since the smallest P-value amongst the tests performed is less than 0,05, we can reject the idea that ROA comes from a normal distribution with 95% confidence.

Appendix 6: ROE by year

One-Way ANOVA - ROE by ANNEE

Dependent variable: ROE Factor: ANNEE

Number of observations: 2840 Number of levels: 5

The StatAdvisor

This procedure performs a one-way analysis of variance for ROE. It constructs various tests and graphs to compare the mean values of ROE for the 5 different levels of ANNEE. The F-test in the ANOVA table will test whether there are any significant differences amongst the means. If there are, the Multiple Range Tests will tell you which means are significantly different from which others. If you are worried about the presence of outliers, choose the Kruskal-Wallis Test which compares medians instead of means. The various plots will help you judge the practical significance of the results, as well as allow you to look for possible violations of the assumptions underlying the analysis of variance.

Summary Statistics for ROE

ANNEE

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

2006

568

-0,0079864

0,541224

-6776,82%

-3,25

3,7011

6,9511

1,84708

2007

568

0,0882099

0,498518

565,15%

-3,90675

3,31882

7,22556

-5,94064

2008

568

Scat

0,07103

by Leve

0,60985

858,581%

-3,3045

3,703

7,0075

-0,658518

2009

568

0,00166802

0,489926

29371,7%

-3,68929

3,90305

7,59234

-11,2575

4 2010

568

0,0906529

0,628869

693,71%

-3,47483

3,57

7,04483

3,45006

Total

2840

0,0487149

0,557841

1145,11%

-3,90675

3,90305

7,80979

-2,20759

2

ANNEE

Stnd. kurtosis

2006

72,8003

2007

101,535

0

2008

78,8042

2009

114,527

2010

2

67,3229

Total

187,103

The StatAdvisor

4

This table shows various statistics for ROE for each of the 5 levels of ANNEE. The one-way analysis of variance is

2006 2007 2008 2009 2010

primarily intended to compare the means of the different levels, listed here under the Average column. Select Means Plot

ANNEE

from the list of Graphical Options to display the means graphically.

WARNING: The standardized skewness and/or kurtosis is outside the range of -2 to +2 for 5 levels of ANNEE. This indicates some significant nonnormality in the data, which violates the assumption that the data come from normal distributions. You may wish to transform the data or use the Kruskal-Wallis test to compare the medians instead of the means.

ANOVA Table for ROE by ANNEE

Source

Sum of Squares

Df

Mean Square

F-Ratio

P-Value

Between groups

5,2512

4

1,3128

4,24

0,0020

Within groups

878,206

2835

0,309773

 
 

Total (Corr.)

883,457

2839

 
 
 

The StatAdvisor

The ANOVA table decomposes the variance of ROE into two components: a between-group component and a within-group component. The F-ratio, which in this case equals 4,23794, is a ratio of the between-group estimate to the within-group estimate. Since the P-value of the F-test is less than 0,05, there is a statistically significant difference between the mean ROE from one level of ANNEE to another at the 95,0% confidence level. To determine which means are significantly different from which others, select Multiple Range Tests from the list of Tabular Options.

ANOVA for ROE

2

Table of Means for ROE by ANNEE with 90,0 percent LSD intervals

0,04

 
 
 

Stnd. error

 
 

ANNEE

Count

Mean

(pooled s)

Lower limit

Upper limit

0

2006

568

-0,0079864

0,0233533

-0,0351483

0,0191755

2007

568

0,0882099

0,0233533

0,061048

0,115372

2008

004

568

0,07103

0,0233533

0,043868

0,0981919

2009

568

0,00166802

2007

,233533

2008 2

-0,0254939

2010

0,0288299

2010

568

0,0906529

0,0233533

NNEE

0,063491

0,117815

Total

2840

0,0487149

 
 
 

The StatAdvisor

This table shows the mean ROE for each level of ANNEE. It also shows the standard error of each mean, which is a measure of its sampling variability. The standard error is formed by dividing the pooled standard deviation by the square root of the number of observations at each level. The table also displays an interval around each mean. The intervals currently displayed are based on Fisher's least significant difference (LSD) procedure. They are constructed in such a way that if two means are the same, their intervals will overlap 95,0% of the time. You can display the intervals graphically by selecting Means Plot from the list of Graphical Options. In the Multiple Range Tests, these intervals are used to determine which means are significantly different from which others.

Multiple Range Tests for ROE by ANNEE Method: 90,0 percent LSD

ANNEE

Count

Mean

Homogeneous Groups

2006

568

-0,0079864

X

2009

568

0,00166802

X

2008

568

0,07103

X

2007

568

0,0882099

X

2010

568

Box-

0,0906529

W h

X

Contrast

Sig.

Difference

+/- Limits

2006 - 2007

2006

*

-0,0961963

0,0543239

2006 - 2008

*

-0,0790164

0,0543239

2006 - 2009

 

-0,00965442

0,0543239

2007

2006 - 2010

*

-0,0986393

0,0543239

2007 - 2008

 

0,0171799

0,0543239

2008

2007 - 2009

*

0,0865419

0,0543239

2007 - 2010

 

-0,00244305

0,0543239

28 - 2009

2009

*

0,0693619

0,0543239

2008 - 2010

 

-0,019623

0,0543239

2009 - 2010

2010

*

-0,0889849

0,0543239

* denotes a statistically significant difference.

The StatAdvisor

This table applies a multiple comparison procedure to determine which means are significantly different from which others. The bottom half of the output shows the estimated difference between each pair of means. An asterisk has been placed next to 6 pairs, indicating that these pairs show statistically significant differences at the 95,0% confidence level. At the top of the page, 2 homogenous groups are identified using columns of X's. Within each column, the levels containing X's form a group of means within which there are no statistically significant differences. The method currently being used to discriminate among the means is Fisher's least significant difference (LSD) procedure. With this method, there is a 5,0% risk of calling each pair of means significantly different when the actual difference equals 0.

Variance Check

 

Test

P-Value

Levene's

1,56665

0,180425

Comparison

Sigma1

Sigma2

F-Ratio

P-Value

2006 / 2007

0,541224

0,498518

1,17867

0,0506

2006 / 2008

0,541224

0,60985

0,787605

0,0045

2006 / 2009

0,541224

0,489926

1,22038

0,0179

2006 / 2010

0,541224

0,628869

0,740685

0,0004

2007 / 2008

0,498518

0,60985

0,668216

0,0000

2007 / 2009

0,498518

0,489926

1,03539

0,6790

2007 / 2010

0,498518

0,628869

0,628409

0,0000

2008 / 2009

0,60985

0,489926

1,54948

0,0000

2008 / 2010

0,60985

0,628869

0,940428

0,4649

2009 / 2010

0,489926

0,628869

0,606932

0,0000

The StatAdvisor

The statistic displayed in this table tests the null hypothesis that the standard deviations of ROE within each of the 5 levels of

4

ANNEE is the same. Of particular interest is the P-value. Since the P-value is greater than or equal to 0,05, there is not a

statistically significant difference amongst the standard deviations at the 95,0% confidence level.

The table also shows a comparison of the standard deviations for each pair of samples. P-Values below 0.05, of which there are 7, indicate a statistically significant difference between the two sigmas at the 5% significance level.

Kruskal-Wallis Test for ROE by ANNEE

ANNEE

Sample Size

Average Rank

2006

568

1275,31

2007

568

1547,93

2008

568

1517,84

2009

568

1287,11

2010

568

1474,32

Test statistic = 57,0073 P-Value = 1,2328E-11

The StatAdvisor

The Kruskal-Wallis test tests the null hypothesis that the medians of ROE within each of the 5 levels of ANNEE are the same. The data from all the levels is first combined and ranked from smallest to largest. The average rank is then computed for the data at each level. Since the P-value is less than 0,05, there is a statistically significant difference amongst the medians at the 95,0% confidence level. To determine which medians are significantly different from which others, select Box-and-Whisker Plot from the list of Graphical Options and select the median notch option.

Mood's Median Test for ROE by ANNEE Total n = 2840

Grand median = 0,0583012

0,12

0,1

ANNEE

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

2006

568

326

242

0,0195117

0,00305438

0,041546

0,08

2007

568

245

323

0,0910952

0,0759334

0,110756

2008

568

250

318

0,0837851

0,065602

0,0957051

0,06

2009

568

328

240

0,0176906

0,00193535

0,0337506

2010

004

568

271

297

0,0734001

0,0512998

0,091961

Test statistic = 46,0986 P-Value = 2,3492E-9

The StatAdvisor

Mood's median test tests the hypothesis that the medians of all 5 samples are equal. It does so by counting the number of

0

observations in each sample on either side of the grand median, which equals 0,0583012. Since the P-value for the chi-

2006 2007 2008 2009 2010

square test is less than 0,1, the medians of the samples are significantly different at the 90,0% confidence level. Also

ANNEE

included (if available) are 90,0% confidence intervals for each median based on the order statistics of each sample.

Appendix 7:ROA by year

One-Way ANOVA - ROA by ANNEE

Dependent variable: ROA Factor: ANNEE

Number of observations: 2840 Number of levels: 5

The StatAdvisor

This procedure performs a one-way analysis of variance for ROA. It constructs various tests and graphs to compare the mean values of ROA for the 5 different levels of ANNEE. The F-test in the ANOVA table will test whether there are any significant differences amongst the means. If there are, the Multiple Range Tests will tell you which means are significantly different from which others. If you are worried about the presence of outliers, choose the Kruskal-Wallis Test which compares medians instead of means. The various plots will help you judge the practical significance of the results, as well as allow you to look for possible violations of the assumptions underlying the analysis of variance.

Summary Statistics for ROA

ANNEE

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

2006

568

-0,013372

0,223258

-1669,59%

-2,05464

0,701545

2,75619

-31,7124

2007

568

0,045657

0,198647

435,086%

-1,41503

0,677594

2,09262

-20,8092

2008

568

Scatte

0,0677319

by Level

0,328621

485,179%

-2,07651

2,83152

4,90803

33,4605

2009

568

-0,0042941

0,204192

-4755,18%

-1,50563

0,600911

2,10654

-23,9402

2,9

2010

568

0,0572362

0,292304

510,697%

-1,41254

2,82314

4,23567

28,9587

Total

2840

0,0305918

0,256688

839,075%

-2,07651

2,83152

4,90803

33,8379

ANNEE

Stnd. kurtosis

2006

118,296

0,9

2007

63,4508

2008

169,523

-0,1

209

65,4003

2010

147,887

-1,1

Total

386,057

The StatAdvisor

21

This table shows various statistics for ROA for each of the 5 levels of ANNEE. The one-way analysis of variance is

2006 2007 2008 2009 2010

primarily intended to compare the means of the different levels, listed here under the Average column. Select Means Plot

ANNEE

from the list of Graphical Options to display the means graphically.

WARNING: The standardized skewness and/or kurtosis is outside the range of -2 to +2 for 5 levels of ANNEE. This indicates some significant nonnormality in the data, which violates the assumption that the data come from normal distributions. You may wish to transform the data or use the Kruskal-Wallis test to compare the medians instead of the means.

ANOVA Table for ROA by ANNEE

Source

Sum of Squares

Df

Mean Square

F-Ratio

P-Value

Between groups

3,10475

4

0,776188

11,96

0,0000

Within groups

183,953

2835

0,0648865

 
 

Total (Corr.)

187,058

2839

 
 
 

The StatAdvisor

The ANOVA table decomposes the variance of ROA into two components: a between-group component and a within-group component. The F-ratio, which in this case equals 11,9622, is a ratio of the between-group estimate to the within-group estimate. Since the P-value of the F-test is less than 0,05, there is a statistically significant difference between the mean ROA from one level of ANNEE to another at the 95,0% confidence level. To determine which means are significantly different from which others, select Multiple Range Tests from the list of Tabular Options.

ANOVA for ROA

0,2 0,8 1,

Table of Means for ROA by ANNEE with 90,0 percent LSD intervals

0,03

 
 
 

Stnd. error

 
 

0,01

ANNEE

Count

Mean

(pooled s)

Lower limit

Upper limit

2006

0,01

568

-0,013372

0,0106882

-0,0258033

-0,000940728

2007

568

0,045657

0,0106882

0,0332257

0,0580883

2008

003

568

0,0677319

0,0106882

0,0553006

0,0801632

2009

568

-0,0042941

2007

0,106882

2008 2

-0,0167254

2010

0,00813719

2010

568

0,0572362

0,0106882

NNEE

0,0448049

0,0696675

Total

2840

0,0305918

 
 
 

The StatAdvisor

This table shows the mean ROA for each level of ANNEE. It also shows the standard error of each mean, which is a measure of its sampling variability. The standard error is formed by dividing the pooled standard deviation by the square root of the number of observations at each level. The table also displays an interval around each mean. The intervals currently displayed are based on Fisher's least significant difference (LSD) procedure. They are constructed in such a way that if two means are the same, their intervals will overlap 95,0% of the time. You can display the intervals graphically by selecting Means Plot from the list of Graphical Options. In the Multiple Range Tests, these intervals are used to determine which means are significantly different from which others.

Multiple Range Tests for ROA by ANNEE Method: 90,0 percent LSD

ANNEE

Count

Mean

Homogeneous Groups

2006

568

-0,013372

X

2009

568

-0,0042941

X

2007

568

0,045657

X

2010

568

0,0572362

X

2008

568

Box-

0,0677319

X h

X

Contrast

Sig.

Difference

+/- Limits

2006 - 2007

2006

*

-0,059029

0,0248626

2006 - 2008

*

-0,0811039

0,0248626

2006 - 2009

 

-0,00907792

0,0248626

2007

2006 - 2010

*

-0,0706082

0,0248626

2007 - 2008

 

-0,0220748

0,0248626

2008

2007 - 2009

*

0,0499511

0,0248626

2007 - 2010

 

-0,0115791

0,0248626

28 - 2009

2009

*

0,072026

0,0248626

2008 - 2010

 

0,0104957

0,0248626

2009 - 2010

2010

*

-0,0615303

0,0248626

* denotes a statistically significant difference.

The StatAdvisor

This table applies a multiple comparison procedure to determine which means are significantly different from which others. The bottom half of the output shows the estimated difference between each pair of means. An asterisk has been placed next to 6 pairs, indicating that these pairs show statistically significant differences at the 95,0% confidence level. At the top of the page, 2 homogenous groups are identified using columns of X's. Within each column, the levels containing X's form a group of means within which there are no statistically significant differences. The method currently being used to discriminate among the means is Fisher's least significant difference (LSD) procedure. With this method, there is a 5,0% risk of calling each pair of means significantly different when the actual difference equals 0.

Variance Check

 

Test

P-Value

Levene's

2,58661

0,0352025

Comparison

Sigma1

Sigma2

F-Ratio

P-Value

2006 / 2007

0,223258

0,198647

1,26314

0,0055

2006 / 2008

0,223258

0,328621

0,461557

0,0000

2006 / 2009

0,223258

0,204192

1,19546

0,0337

2006 / 2010

0,223258

0,292304

0,583375

0,0000

2007 / 2008

0,198647

0,328621

0,365405

0,0000

2007 / 2009

0,198647

0,204192

0,946424

0,5123

2007 / 2010

0,198647

0,292304

0,461846

0,0000

2008 / 2009

0,328621

0,204192

2,59007

0,0000

2008 / 2010

0,328621

0,292304

1,26393

0,0054

2009 / 2010

0,204192

0,292304

0,48799

0,0000

The StatAdvisor

The statistic displayed in this table tests the null hypothesis that the standard deviations of ROA within each of the 5 levels of

3

ANNEE is the same. Of particular interest is the P-value. Since the the P-value is less than 0,05, there is a statistically significant difference amongst the standard deviations at the 95,0% confidence level. This violates one of the important

2

assumptions underlying the analysis of variance and will invalidate most of the standard statistical tests.

The table also shows a comparison of the standard deviations for each pair of samples. P-Values below 0.05, of which there are 9, indicate a statistically significant difference between the two sigmas at the 5% significance level.

0

Kruskal-Wallis Test for ROA by ANNEE

ANNEE

Sample Size

Average Rank

2006

568

1253,72

2007

568

1552,39

2008

568

1545,22

2009

568

1269,77

2010

568

1481,39

Test statistic = 73,6591 P-Value = 0

The StatAdvisor

The Kruskal-Wallis test tests the null hypothesis that the medians of ROA within each of the 5 levels of ANNEE are the same. The data from all the levels is first combined and ranked from smallest to largest. The average rank is then computed for the data at each level. Since the P-value is less than 0,05, there is a statistically significant difference amongst the medians at the 95,0% confidence level. To determine which medians are significantly different from which others, select Box-and-Whisker Plot from the list of Graphical Options and select the median notch option.

Mood's Median Test for ROA by ANNEE Total n = 2840

0001

Grand median = 0,034619

79

ANNEE

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

59

2006

568

339

229

0,00945275

-0,000555481

0,0218933

2007

568

242

326

0,0570648

0,0460463

0,0689174

2008

568

248

320

0,0528593

0,0436125

0,0621654

39

2009

568

327

241

0,0121847

0,000872383

0,0184358

2010

568

264

304

0,044225

0,0338877

0,0561194

Test statistic = 58,6901 P-Value = 5,46618E-12

19

The StatAdvisor

Mood's median test tests the hypothesis that the medians of all 5 samples are equal. It does so by counting the number of

1

observations in each sample on either side of the grand median, which equals 0,034619. Since the P-value for the chi-square

2006 2007 2008 2009 2010

test is less than 0,1, the medians of the samples are significantly different at the 90,0% confidence level. Also included (if

ANNEE

available) are 90,0% confidence intervals for each median based on the order statistics of each sample.

Appendix 8: ROE by groups for dairy production

One-Way ANOVA - ROE by Groups (ANNEE=2010&SPECIALISATION="Bovins lait")

Dependent variable: ROE

Factor: Groups

Selection variable: ANNEE=2010&SPECIALISATION="Bovins lait"

Number of observations: 141 Number of levels: 5

Summary Statistics for ROE

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

10

-0,0069795

0,262229

-3757,13%

-0,484615

0,252975

0,73759

-1,14121

2

48

0,142481

0,180874

126,946%

-0,412968

0,474718

0,887686

-2,98642

3

43

0,123011

0,208889

169,813%

-0,37387

0,642566

1,01644

0,773958

4

28

0,0362009

0,195441

539,878%

-0,268354

0,67475

0,943103

2,75521

5

12

0,0452324

0,0883501

195,325%

-0,0649112

0,241946

0,306857

1,52055

Total

141

0,0965617

0,197818

204,861%

-0,484615

0,67475

1,15936

-0,42451

Groups

Stnd. kurtosis

1

-0,367154

2

2,91906

3

0,924502

4

3,11992

5

0,672821

Total

2,31948

Kruskal-Wallis Test for ROE by Groups

Groups

Sample Size

Average Rank

2

1

10

59,3

2

Cs)

48

83,875

3

43

75,2093

4

28

53,7857

5

12

54,3333

Test statistic = 13,0166 P-Value = 0,0111951

Mood's Median Test for ROE by Groups Total n = 141

6 04

Grand median = 0,104137

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

10

6

4

0,0749859

-0,379136

0,23285

2

48

17

31

0,162987

0,111378

0,214087

3

43

20

23

0,121517

0,0528025

0,196325

4

28

19

9

0,0175846

-0,083556

0,106835

5

12

9

3

0,0220671

-0,0257561

0,128591

Test statistic = 11,2575 P-Value = 0,0238171

One-Way ANOVA - ROE by Groups (ANNEE=2009&SPECIALISATION="Bovins lait")

Dependent variable: ROE

Factor: Groups

Selection variable: ANNEE=2009&SPECIALISATION="Bovins lait"

Number of observations: 141 Number of levels: 5

Summary Statistics for ROE

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

10

-0,17879

1,37918

-771,394%

-3,68929

1,89707

5,58636

-2,33501

2

42

0,11621

0,185857

159,932%

-0,376288

0,596295

0,972584

0,502

3

39

0,0630057

0,137776

218,672%

-0,181477

0,29342

0,474897

-0,76982

4

36

0,0100035

0,175893

1758,32%

-0,318248

0,462527

0,780774

2,18408

5

14

-0,0197315

0,0917217

-464,848%

-0,213078

0,123559

0,336637

-0,648606

Total

141

0,0399575

0,389822

975,59%

-3,68929

1,89707

5,58636

-26,7144

Groups

Stnd. kurtosis

1

3,83774

2

1,17713

3

-1,46433

4

0,88851

5

0,0493783

Total

153,54

Kruskal-Wallis Test for ROE by Groups

Groups

3

Sample Size

Average Rank

1

10

65,2

2

42

85,5952

3

39

76,3077

4

36

57,1389

5

14

52,2143

Test statistic = 13,3289 P-Value = 0,00977558 Mood's Median Test for ROE by Groups

ROE

Total n = 141

Grand median = 0,0435052

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

10

5

5

0,0550638

-0,618245

0,387143

2

42

13

29

0,099151

0,0719154

0,155127

3

39

16

23

0,0898162

0,0108911

0,150199

4

36

26

10

-0,00936615

-0,0647502

0,0233567

5

14

11

3

-0,0151896

-0,103506

0,0445331

Test statistic = 19,0281 P-Value = 0,000776032

One-Way ANOVA - ROE by Groups (ANNEE=2008&SPECIALISATION="Bovins lait")

Dependent variable: ROE

Factor: Groups

Selection variable: ANNEE=2008&SPECIALISATION="Bovins lait"

Number of observations: 141 Number of levels: 5

Summary Statistics for ROE

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

6

0,075066

2,21034

2944,52%

-3,267

3,703

6,97

0,288721

2

33

0,106858

0,284379

266,127%

-1,04792

0,891704

1,93962

-3,53472

3

48

0,103257

0,150159

145,423%

-0,177508

0,584271

0,761778

2,14386

4

40

0,0920779

0,125932

136,767%

-0,156094

0,329752

0,485846

-0,006572

5

14

0,121409

0,358122

294,972%

-0,115502

1,34073

1,45623

5,31902

Total

141

0,101531

0,4658

458,776%

-3,267

3,703

6,97

3,27998

Groups

Stnd. kurtosis

1

1,24469

2

10,951

3

1,51367

4

-0,748698

5

9,66003

Total

108,366

Kruskal-Wallis Test for ROE by Groups

3

Groups

Sample Size

Average Rank

1

6

58,1667

2

33

79,0303

3

48

71,7083

4

40

70,575

5

14

56,3571

0

, ,

Test statistic = 3,68552 P-Value = 0,450235

ROE

Mood's Median Test for ROE by Groups Total n = 141

Grand median = 0,0900887

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

6

3

3

0,0677642

 
 

2

33

11

22

0,125305

0,0811245

0,185447

3

48

25

23

0,0847578

0,0506366

0,131847

4

40

22

18

0,0781741

0,0264757

0,146814

5

14

10

4

0,0356748

-0,0276925

0,118881

Test statistic = 6,71467 P-Value = 0,151757

One-Way ANOVA - ROE by Groups (ANNEE=2007&SPECIALISATION="Bovins lait")

Dependent variable: ROE

Factor: Groups

Selection variable: ANNEE=2007&SPECIALISATION="Bovins lait"

Number of observations: 141 Number of levels: 5

Summary Statistics for ROE

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

7

-0,20666

1,02638

-496,653%

-2,52135

0,386503

2,90785

-2,79018

2

34

0,177157

0,250627

141,472%

-0,362507

1,06101

1,42352

3,11097

3

49

0,0841043

0,146422

174,096%

-0,481832

0,37319

0,855022

-3,64391

4

38

0,0371798

0,147275

396,114%

-0,270465

0,39789

0,668355

0,0203899

5

13

-0,0100111

0,0819924

-819,015%

-0,105939

0,165918

0,271857

1,15795

Total

141

0,0707839

0,28493

402,535%

-2,52135

1,06101

3,58236

-24,7291

Groups

Stnd. kurtosis

1

3,6496

2

5,01567

3

4,98283

4

0,0175206

5

0,00589768

Total

120,25

Kruskal-Wallis Test for ROE by Groups

4

Groups

Sample Size

Average Rank

1

7

84,1429

2

34

87,8529

3

49

74,4898

4

38

1 0

59,1053

5

13

41,4615

Test statistic = 16,8905 P-Value = 0,00202995

Mood's Median Test for ROE by Groups Total n = 141

Grand median = 0,0919618

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

7

2

5

0,1569

 
 

2

34

10

24

0,140842

0,102307

0,193956

3

49

23

26

0,120696

0,0469401

0,164298

4

38

24

14

0,0287984

-0,0153515

0,119707

5

13

12

1

-0,0275842

-0,0825783

0,0486049

Test statistic = 19,1672 P-Value = 0,000728654

One-Way ANOVA - ROE by Groups (ANNEE=2006&SPECIALISATION="Bovins lait")

Dependent variable: ROE

Factor: Groups

Selection variable: ANNEE=2006&SPECIALISATION="Bovins lait"

Number of observations: 141 Number of levels: 5

Summary Statistics for ROE

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

8

-0,143292

0,641699

-447,826%

-1,38481

0,676675

2,06148

-1,25734

2

35

0,0225383

0,240142

1065,48%

-1,09395

0,276005

1,36996

-7,54682

3

50

0,0475295

0,194926

410,116%

-0,699781

0,443904

1,14368

-3,02011

4

34

0,00565164

0,126919

2245,71%

-0,254159

0,257111

0,511269

0,526975

5

14

0,0271876

0,10212

375,611%

-0,0965745

0,303625

0,4002

2,70992

Total

141

0,0183813

0,233466

1270,13%

-1,38481

0,676675

2,06148

-12,3857

Groups

Stnd. kurtosis

1

0,679283

2

16,2943

3

4,88459

4

-0,227566

5

2,80584

Total

31,5881

Kruskal-Wallis Test for ROE by Groups

Groups

5

Sample Size

Average Rank

1

8

67,5

2

35

76,2286

-02

3

50

75,86

4

34

61,1471

5

14

66,5

Test statistic = 3,48819 P-Value = 0,479676

Mood's Median Test for ROE by Groups Total n = 141

Grand median = 0,0333134

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

8

5

3

-0,000383141

-1,3004

0,615859

2

35

14

21

0,0600382

-0,0171497

0,142537

3

50

20

30

0,0771671

0,00399078

0,126858

4

34

22

12

-0,0159893

-0,0583432

0,0413279

5

14

10

4

0,0124171

-0,0434617

0,0456193

Test statistic = 9,40599 P-Value = 0,0517153

Appendix 9: ROE by groups for cattle specialization

One-Way ANOVA - ROE by Groups (ANNEE=2006&SPECIALISATION="Bovins viande")

Dependent variable: ROE

Factor: Groups

Selection variable: ANNEE=2006&SPECIALISATION="Bovins viande"

Number of observations: 45 Number of levels: 5

Summary Statistics for ROE

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

7

-0,0824401

0,59067

-716,484%

-1,40816

0,248772

1,65693

-2,73727

2

6

-0,133896

0,230839

-172,402%

-0,567189

0,0267818

0,593971

-1,70149

3

7

-0,100753

0,239325

-237,537%

-0,526313

0,16275

0,689062

-1,00633

4

16

-0,158071

0,283015

-179,042%

-1,0385

0,149503

1,188

-3,41863

5

9

-0,138262

0,411863

-297,886%

-1,21844

0,131187

1,34963

-3,43557

Total

45

-0,130205

0,34697

-266,48%

-1,40816

0,248772

1,65693

-6,25348

Groups

Stnd. kurtosis

1

3,53339

2

1,45072

3

0,225223

4

4,876

5

5,01709

Total

7,65586

Kruskal-Wallis Test for ROE by Groups

Groups

Sample Size

Average Rank

1

7

33,7143

2

6

20,6667

3

7

22,2857

4

16

19,1875

5

9

23,5556

Test statistic = 6,23275 P-Value = 0,182427

Mood's Median Test for ROE by Groups Total n = 45

Grand median = -0,0364259

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

7

1

6

0,149788

 
 

2

6

3

3

-0,0463576

 
 

3

7

4

3

-0,0429657

 
 

4

16

10

6

-0,0797749

-0,286345

0,0373879

5

9

5

4

-0,0364259

-0,719997

0,122984

Test statistic = 4,80555 P-Value = 0,307838

One-Way ANOVA - ROE by Groups (ANNEE=2007&SPECIALISATION="Bovins viande")

Dependent variable: ROE

Factor: Groups

Selection variable: ANNEE=2007&SPECIALISATION="Bovins viande"

Number of observations: 45 Number of levels: 5

Summary Statistics for ROE

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

5

0,350147

0,452136

129,127%

-0,0783535

0,965862

1,04422

0,501517

2

4

0,0319552

0,274144

857,902%

-0,374624

0,203506

0,57813

-1,52757

3

10

-0,00885641

0,230547

-2603,16%

-0,436945

0,272862

0,709807

-1,60867

4

14

-0,0810269

0,28336

-349,711%

-1,03602

0,134314

1,17033

-5,12914

5

12

-0,119093

0,347957

-292,173%

-1,08706

0,167536

1,25459

-3,22219

Total

45

-0,0171888

0,329044

-1914,29%

-1,08706

0,965862

2,05292

-2,20465

Groups

Stnd. kurtosis

1

-0,792416

2

1,43611

3

0,476563

4

9,17569

5

3,97617

Total

6,68529

Kruskal-Wallis Test for ROE by Groups

Groups

Sample Size

Average Rank

1

5

31,0

2

4

30,25

3

10

26,1

4

14

18,1429

5

12

20,3333

Test statistic = 6,0404 P-Value = 0,196151

Mood's Median Test for ROE by Groups Total n = 45

Grand median = 0,0260234

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

5

2

3

0,250584

 
 

2

4

1

3

0,149469

 
 

3

10

3

7

0,0563751

-0,408074

0,18652

4

14

10

4

-0,0117706

-0,0781489

0,0366616

5

12

7

5

0,0195701

-0,364224

0,0845263

Test statistic = 5,68535 P-Value = 0,223911

One-Way ANOVA - ROE by Groups (ANNEE=2008&SPECIALISATION="Bovins viande")

Dependent variable: ROE

Factor: Groups

Selection variable: ANNEE=2008&SPECIALISATION="Bovins viande"

Number of observations: 45 Number of levels: 5

Summary Statistics for ROE

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

3

-0,137126

0,268858

-196,066%

-0,442407

0,0643751

0,506782

-1,04524

2

6

0,200511

0,0814852

40,6389%

0,124808

0,341432

0,216623

1,16574

3

12

0,193629

0,925176

477,808%

-0,481933

3,053

3,53493

4,4236

4

10

-0,0391609

0,0765327

-195,431%

-0,166521

0,0709146

0,237435

-0,429557

5

14

-0,233825

0,391322

-167,357%

-1,13931

0,081154

1,22046

-2,50106

Total

45

-0,0122204

0,546856

-4474,94%

-1,13931

3,053

4,19231

10,3766

Groups

Stnd. kurtosis

1

 

2

0,433379

3

7,37526

4

-0,621184

5

1,23119

Total

31,9128

Kruskal-Wallis Test for ROE by Groups

Groups

Sample Size

Average Rank

1

3

19,0

2

6

40,8333

3

12

24,6667

4

10

21,0

5

14

16,2143

Test statistic = 15,5023 P-Value = 0,0037652

Mood's Median Test for ROE by Groups Total n = 45

Grand median = -0,00954206

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

3

2

1

-0,0333468

 
 

2

6

0

6

0,177259

 
 

3

12

5

7

0,0251912

-0,299153

0,149681

4

10

6

4

-0,0288041

-0,128674

0,0316859

5

14

10

4

-0,0589653

-0,468499

0,0204429

Test statistic = 9,62062 P-Value = 0,0473268

One-Way ANOVA - ROE by Groups (ANNEE=2009&SPECIALISATION="Bovins viande")

Dependent variable: ROE

Factor: Groups

Selection variable: ANNEE=2009&SPECIALISATION="Bovins viande"

Number of observations: 45 Number of levels: 5

Summary Statistics for ROE

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

7

0,0674309

0,133599

198,127%

-0,0885807

0,339021

0,427602

1,678

2

6

-0,00554691

0,302544

-5454,28%

-0,536908

0,316999

0,853907

-1,1561

3

7

0,0118722

0,235413

1982,89%

-0,321133

0,434852

0,755984

0,734801

4

13

-0,0072047

0,257595

-3575,37%

-0,37133

0,729829

1,10116

2,94153

5

12

-0,204717

0,385528

-188,322%

-1,13015

0,0444478

1,1746

-2,77536

Total

45

-0,0450762

0,292856

-649,69%

-1,13015

0,729829

1,85998

-3,41959

Groups

Stnd. kurtosis

1

1,87505

2

0,748515

3

0,758146

4

4,36867

5

1,95883

Total

7,26813

Kruskal-Wallis Test for ROE by Groups

Groups

Sample Size

Average Rank

1

7

30,2857

2

6

26,1667

3

7

24,4286

4

13

21,3077

5

12

18,1667

Test statistic = 4,4266 P-Value = 0,35134

Mood's Median Test for ROE by Groups Total n = 45

Grand median = -0,030158

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

7

1

6

0,0295297

 
 

2

6

3

3

0,0492473

 
 

3

7

4

3

-0,0559836

 
 

4

13

8

5

-0,0533762

-0,147412

0,0818418

5

12

7

5

-0,0593088

-0,518098

0,0304725

Test statistic = 4,72004 P-Value = 0,317248

One-Way ANOVA - ROE by Groups (ANNEE=2010&SPECIALISATION="Bovins viande")

Dependent variable: ROE

Factor: Groups

Selection variable: ANNEE=2010&SPECIALISATION="Bovins viande"

Number of observations: 45 Number of levels: 5

Summary Statistics for ROE

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

5

-0,0655322

0,312964

-477,572%

-0,608197

0,156568

0,764764

-1,74174

2

8

0,0281413

0,327645

1164,28%

-0,58715

0,465494

1,05264

-0,979147

3

7

0,058023

0,17472

301,122%

-0,122793

0,384158

0,506951

1,1234

4

15

0,033406

0,200963

601,577%

-0,152073

0,678656

0,830729

4,12163

5

10

-0,111302

0,656989

-590,277%

-1,49246

1,18739

2,67985

-0,314283

Total

45

-0,00685106

0,368239

-5374,92%

-1,49246

1,18739

2,67985

-2,12124

Groups

Stnd. kurtosis

1

1,74629

2

0,476915

3

0,634647

4

6,42088

5

2,12482

Total

10,2089

Kruskal-Wallis Test for ROE by Groups

Groups

Sample Size

Average Rank

1

5

23,6

2

8

27,125

3

7

25,0

4

15

22,2

5

10

19,2

Test statistic = 1,85464 P-Value = 0,762472

Mood's Median Test for ROE by Groups Total n = 45

Grand median = 0,0147703

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

5

2

3

0,0190313

 
 

2

8

3

5

0,0835481

-0,544271

0,440487

3

7

3

4

0,094098

 
 

4

15

9

6

-0,00436701

-0,0863766

0,091969

5

10

6

4

-0,00584826

-0,622008

0,214118

Test statistic = 1,82153 P-Value = 0,76854

Appendix 10: ROE by groups for grain specialization

One-Way ANOVA - ROE by Groups (ANNEE=2006&SPECIALISATION="Grandes cultures")

Dependent variable: ROE

Factor: Groups

Selection variable: ANNEE=2006&SPECIALISATION="Grandes cultures"

Number of observations: 126 Number of levels: 5

Summary Statistics for ROE

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

26

0,179213

1,2686

707,873%

-2,7905

3,7011

6,4916

1,73148

2

25

-0,0607359

0,608729

-1002,26%

-1,40621

1,22074

2,62696

-0,970494

3

28

-0,229362

0,671868

-292,929%

-3,25

0,240467

3,49047

-7,95841

4

28

-0,0463455

0,30485

-657,778%

-0,85709

0,622275

1,47936

-0,288213

5

19

0,00180915

0,119182

6587,76%

-0,343083

0,196914

0,539997

-1,78401

Total

126

-0,0360658

0,728705

-2020,49%

-3,25

3,7011

6,9511

2,59487

Groups

Stnd. kurtosis

1

3,16843

2

0,267322

3

17,0465

4

1,31149

5

2,74246

Total

26,5316

Kruskal-Wallis Test for ROE by Groups

Groups

Sample Size

Average Rank

1

26

73,5769

2

25

66,48

3

28

53,6071

4

28

59,75

5

19

65,8947

Test statistic = 4,57832 P-Value = 0,333361

Mood's Median Test for ROE by Groups Total n = 126

Grand median = -0,00516469

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

26

9

17

0,127062

-0,323749

0,515738

2

25

11

14

0,0162612

-0,214373

0,217584

3

28

16

12

-0,0916287

-0,169954

0,051114

4

28

17

11

-0,0583804

-0,168101

0,083301

5

19

10

9

-0,00722626

-0,0502325

0,077573

Test statistic = 4,73131 P-Value = 0,315994

One-Way ANOVA - ROE by Groups (ANNEE=2007&SPECIALISATION="Grandes cultures")

Dependent variable: ROE

Factor: Groups

Selection variable: ANNEE=2007&SPECIALISATION="Grandes cultures"

Number of observations: 126 Number of levels: 5

Summary Statistics for ROE

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

17

0,313318

1,35468

432,366%

-2,42969

3,31882

5,74851

-0,0972392

2

20

0,387628

0,374057

96,4989%

-0,302679

1,03553

1,33821

0,0513675

3

28

0,224728

0,341117

151,791%

-0,76952

0,759663

1,52918

-2,12864

4

30

0,0938323

0,434063

462,594%

-1,607

0,727135

2,33414

-4,80535

5

31

0,144244

0,188682

130,808%

-0,161782

0,682598

0,84438

1,8683

Total

126

0,211571

0,58687

277,387%

-2,42969

3,31882

5,74851

0,152769

Groups

Stnd. kurtosis

1

0,947297

2

-0,338419

3

1,27225

4

8,34027

5

1,03053

Total

24,1497

Kruskal-Wallis Test for ROE by Groups

Groups

Sample Size

Average Rank

1

17

68,4118

2

20

80,1

3

28

68,5

4

30

56,2333

5

31

52,6129

Test statistic = 8,90878 P-Value = 0,0634204

Mood's Median Test for ROE by Groups Total n = 126

Grand median = 0,217189

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

17

9

8

0,212239

-0,312194

1,10676

2

20

4

16

0,349002

0,227342

0,615027

3

28

11

17

0,324976

0,0618571

0,425479

4

30

18

12

0,159329

0,0492383

0,243204

5

31

21

10

0,110928

0,0475332

0,22415

Test statistic = 13,6478 P-Value = 0,0085084

One-Way ANOVA - ROE by Groups (ANNEE=2008&SPECIALISATION="Grandes cultures")

Dependent variable: ROE

Factor: Groups

Selection variable: ANNEE=2008&SPECIALISATION="Grandes cultures"

Number of observations: 126 Number of levels: 5

Summary Statistics for ROE

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

11

-0,0327873

1,60727

-4902,11%

-2,50663

3,0111

5,51773

0,0378886

2

19

-0,0564867

0,93133

-1648,76%

-2,69078

0,844573

3,53535

-3,89846

3

31

0,140444

0,397205

282,82%

-0,854586

0,968828

1,82341

-1,36906

4

36

0,173722

0,249045

143,359%

-0,480456

0,918507

1,39896

-0,402512

5

29

0,270691

0,585796

216,408%

-0,181367

3,181

3,36237

10,2369

Total

126

0,13511

0,690238

510,871%

-2,69078

3,181

5,87178

-2,50975

Groups

Stnd. kurtosis

1

0,226125

2

3,87705

3

0,740814

4

3,45077

5

25,9989

Total

23,3753

Kruskal-Wallis Test for ROE by Groups

Groups

Sample Size

Average Rank

1

11

59,0909

2

19

64,8421

3

31

64,2903

4

36

64,1111

5

29

62,6897

Test statistic = 0,224908 P-Value = 0,994132

Mood's Median Test for ROE by Groups Total n = 126

Grand median = 0,158119

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

11

6

5

0,106996

-2,13698

1,11392

2

19

9

10

0,222666

-0,0259652

0,468206

3

31

13

18

0,19585

0,00799357

0,346097

4

36

18

18

0,157943

0,121049

0,248522

5

29

17

12

0,140075

0,0642507

0,268611

Test statistic = 1,81206 P-Value = 0,770275

One-Way ANOVA - ROE by Groups (ANNEE=2009&SPECIALISATION="Grandes cultures")

Dependent variable: ROE

Factor: Groups

Selection variable: ANNEE=2009&SPECIALISATION="Grandes cultures"

Number of observations: 126 Number of levels: 5

Summary Statistics for ROE

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

16

-0,125603

0,867811

-690,918%

-3,0875

0,623308

3,71081

-4,80476

2

30

-0,127775

0,699474

-547,427%

-3,04993

1,08441

4,13434

-5,23813

3

24

-0,169858

0,567433

-334,063%

-2,0637

0,486368

2,55007

-3,81864

4

29

0,00564268

0,177867

3152,17%

-0,226196

0,608902

0,835098

4,06886

5

27

-0,0230683

0,343156

-1487,57%

-1,23032

0,707247

1,93757

-2,58084

Total

126

-0,0823706

0,547235

-664,357%

-3,0875

1,08441

4,17191

-13,5848

Groups

Stnd. kurtosis

1

8,1581

2

11,4772

3

4,52777

4

4,66555

5

5,88206

Total

32,3185

Kruskal-Wallis Test for ROE by Groups

Groups

Sample Size

Average Rank

1

16

72,8125

2

30

56,8667

3

24

60,2083

4

29

66,5172

5

27

65,037

Test statistic = 2,47127 P-Value = 0,649788

Mood's Median Test for ROE by Groups Total n = 126

Grand median = -0,045463

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

16

6

10

0,0520806

-0,166633

0,346845

2

30

19

11

-0,0973981

-0,308864

0,0792782

3

24

13

11

-0,0574204

-0,193187

0,139505

4

29

12

17

-0,0339269

-0,0779227

0,0381452

5

27

13

14

-0,0370192

-0,128781

0,0722118

Test statistic = 4,19911 P-Value = 0,37973

One-Way ANOVA - ROE by Groups (ANNEE=2010&SPECIALISATION="Grandes cultures")

Dependent variable: ROE

Factor: Groups

Selection variable: ANNEE=2010&SPECIALISATION="Grandes cultures"

Number of observations: 126 Number of levels: 5

Summary Statistics for ROE

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

23

0,365149

1,55797

426,666%

-3,43153

3,04051

6,47204

-1,30814

2

28

-0,0165585

0,803741

-4853,95%

-2,79716

1,43732

4,23449

-4,06086

3

27

0,0836475

0,442804

529,369%

-0,876775

1,12613

2,0029

0,527303

4

22

0,165111

0,778352

471,412%

-0,764529

2,94949

3,71402

4,66934

5

26

0,0409212

0,394668

964,46%

-0,51794

1,15891

1,67686

3,03462

Total

126

0,118172

0,870417

736,569%

-3,43153

3,04051

6,47204

-0,99077

Groups

Stnd. kurtosis

1

1,41263

2

5,76644

3

1,80958

4

7,20079

5

2,1899

Total

13,7459

Kruskal-Wallis Test for ROE by Groups

Groups

Sample Size

Average Rank

1

23

82,2174

2

28

64,6786

3

27

62,3333

4

22

56,0455

5

26

53,1923

Test statistic = 9,08773 P-Value = 0,0589437

Mood's Median Test for ROE by Groups Total n = 126

Grand median = 0,0469154

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

23

7

16

0,320624

0,0355358

0,546584

2

28

12

16

0,10634

-0,102615

0,378908

3

27

12

15

0,0793623

-0,0679452

0,247933

4

22

15

7

-0,0154434

-0,147291

0,088839

5

26

17

9

-0,0381151

-0,184124

0,10304

Test statistic = 9,79713 P-Value = 0,0439872

Appendix 11: ROA by groups for dairy specialization

One-Way ANOVA - ROA by Groups (ANNEE=2006&SPECIALISATION="Bovins lait")

Dependent variable: ROA

Factor: Groups

Selection variable: ANNEE=2006&SPECIALISATION="Bovins lait"

Number of observations: 141 Number of levels: 5

Summary Statistics for ROA

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

8

-0,0276876

0,142156

-513,428%

-0,286952

0,158607

0,445559

-0,534166

2

35

0,0286671

0,0880925

307,295%

-0,264655

0,154997

0,419652

-2,50623

3

50

0,0389244

0,121565

312,31%

-0,456612

0,275404

0,732016

-3,21185

4

34

0,00725538

0,0943411

1300,29%

-0,17114

0,224912

0,396052

1,06473

5

14

0,0252457

0,0962117

381,101%

-0,0883339

0,303035

0,391369

3,15877

Total

141

0,0236042

0,106445

450,959%

-0,456612

0,303035

0,759647

-2,64697

Groups

Stnd. kurtosis

1

0,348903

2

2,46083

3

6,51958

4

-0,0314555

5

4,01228

Total

6,72696

Kruskal-Wallis Test for ROA by Groups

Groups

Sample Size

Average Rank

1

8

54,625

2

35

74,8

3

50

78,26

4

34

61,9118

5

14

67,0

Test statistic = 4,98542 P-Value = 0,288797

Mood's Median Test for ROA by Groups Total n = 141

Grand median = 0,0220625

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

8

6

2

-0,0301937

-0,263351

0,155944

2

35

15

20

0,0256582

-0,00587675

0,0856697

3

50

20

30

0,0500655

0,00212655

0,0763213

4

34

21

13

-0,0110551

-0,0471129

0,0310625

5

14

9

5

0,0102684

-0,0378927

0,0391715

Test statistic = 7,73279 P-Value = 0,101872

One-Way ANOVA - ROA by Groups (ANNEE=2007&SPECIALISATION="Bovins lait")

Dependent variable: ROA

Factor: Groups

Selection variable: ANNEE=2007&SPECIALISATION="Bovins lait"

Number of observations: 141 Number of levels: 5

Summary Statistics for ROA

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

7

0,0431667

0,117686

272,63%

-0,206161

0,141439

0,3476

-2,13626

2

34

0,091015

0,0987241

108,47%

-0,089323

0,353563

0,442886

2,18268

3

49

0,0587761

0,0951325

161,856%

-0,250523

0,336835

0,587358

-0,867226

4

38

0,0305541

0,107431

351,609%

-0,209863

0,300593

0,510456

0,346439

5

13

-0,00667726

0,0742954

-1112,66%

-0,0941891

0,158182

0,252371

1,30607

Total

141

0,0521344

0,101742

195,153%

-0,250523

0,353563

0,604086

0,494216

Groups

Stnd. kurtosis

1

2,35332

2

1,70826

3

3,09405

4

0,132081

5

0,297842

Total

2,51387

Kruskal-Wallis Test for ROA by Groups

Groups

Sample Size

Average Rank

1

7

76,8571

2

34

84,4706

3

49

75,1633

4

38

61,9737

5

13

43,3077

Test statistic = 12,1811 P-Value = 0,0160539

Mood's Median Test for ROA by Groups Total n = 141

Grand median = 0,0550632

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

7

3

4

0,0682113

 
 

2

34

11

23

0,0789014

0,0562679

0,103172

3

49

22

27

0,0688806

0,0244087

0,0981639

4

38

24

14

0,0202312

-0,0107817

0,0908195

5

13

11

2

-0,0253725

-0,069592

0,0417187

Test statistic = 13,7443 P-Value = 0,00815748

One-Way ANOVA - ROA by Groups (ANNEE=2008&SPECIALISATION="Bovins lait")

Dependent variable: ROA

Factor: Groups

Selection variable: ANNEE=2008&SPECIALISATION="Bovins lait"

Number of observations: 141 Number of levels: 5

Summary Statistics for ROA

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

6

-0,13581

0,22382

-164,803%

-0,458807

0,0627273

0,521534

-0,719548

2

33

0,061246

0,11112

181,432%

-0,315704

0,356522

0,672226

-1,49312

3

48

0,0709067

0,102503

144,56%

-0,1078

0,38364

0,49144

2,8109

4

40

0,0697293

0,0930542

133,451%

-0,106346

0,250123

0,356469

0,516

5

14

0,114182

0,339191

297,062%

-0,0959154

1,27192

1,36783

5,36768

Total

141

0,063812

0,152396

238,82%

-0,458807

1,27192

1,73072

15,6065

Groups

Stnd. kurtosis

1

-0,816362

2

4,77391

3

1,78309

4

-0,706596

5

9,78065

Total

69,5517

Kruskal-Wallis Test for ROA by Groups

Groups

Sample Size

Average Rank

1

6

33,8333

2

33

74,303

3

48

72,7917

4

40

74,825

5

14

62,0714

Test statistic = 6,29522 P-Value = 0,178159

Mood's Median Test for ROA by Groups Total n = 141

Grand median = 0,0501904

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

6

5

1

-0,0544237

 
 

2

33

14

19

0,0606138

0,0374828

0,106412

3

48

24

24

0,0527917

0,024406

0,0916713

4

40

20

20

0,0551586

0,0217964

0,10954

5

14

8

6

0,0311118

-0,0237862

0,107481

Test statistic = 3,70305 P-Value = 0,447682

One-Way ANOVA - ROA by Groups (ANNEE=2009&SPECIALISATION="Bovins lait")

Dependent variable: ROA

Factor: Groups

Selection variable: ANNEE=2009&SPECIALISATION="Bovins lait"

Number of observations: 141 Number of levels: 5

Summary Statistics for ROA

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

10

-0,0530749

0,174992

-329,708%

-0,464359

0,116707

0,581066

-1,98846

2

42

0,0624122

0,0839266

134,471%

-0,101321

0,31074

0,41206

1,26242

3

39

0,0469517

0,0859704

183,104%

-0,0800366

0,221199

0,301236

0,211634

4

36

0,0117456

0,132892

1131,42%

-0,194892

0,350478

0,54537

2,56668

5

14

-0,0183905

0,0860311

-467,801%

-0,20497

0,115921

0,320892

-0,71293

Total

141

0,0289862

0,111116

383,342%

-0,464359

0,350478

0,814837

-1,10943

Groups

Stnd. kurtosis

1

1,81784

2

0,905741

3

-1,26116

4

0,830834

5

0,270994

Total

5,91865

Kruskal-Wallis Test for ROA by Groups

Groups

Sample Size

Average Rank

1

10

54,8

2

42

85,3571

3

39

78,7179

4

36

57,6944

5

14

52,2143

Test statistic = 14,9349 P-Value = 0,00483818

Mood's Median Test for ROA by Groups Total n = 141

Grand median = 0,0264797

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

10

6

4

-0,0185376

-0,202246

0,112088

2

42

14

28

0,0601934

0,0371256

0,0825121

3

39

16

23

0,0513118

0,00540596

0,0953483

4

36

26

10

-0,00644387

-0,0427011

0,0156736

5

14

9

5

-0,0137695

-0,0925586

0,0372823

Test statistic = 14,5707 P-Value = 0,00567971

One-Way ANOVA - ROA by Groups (ANNEE=2010&SPECIALISATION="Bovins lait")

Dependent variable: ROA

Factor: Groups

Selection variable: ANNEE=2010&SPECIALISATION="Bovins lait"

Number of observations: 141 Number of levels: 5

Summary Statistics for ROA

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

10

0,0334214

0,0841506

251,786%

-0,112091

0,130723

0,242815

-0,717725

2

48

0,0807499

0,0909653

112,651%

-0,197911

0,323128

0,521039

-1,2612

3

43

0,0720914

0,112581

156,164%

-0,150311

0,328919

0,47923

0,716939

4

28

0,0258738

0,139871

540,588%

-0,206584

0,454306

0,66089

2,57093

5

12

0,041393

0,0791111

191,122%

-0,0596758

0,211972

0,271648

1,42801

Total

141

0,0605058

0,108654

179,575%

-0,206584

0,454306

0,66089

1,67491

Groups

Stnd. kurtosis

1

-0,512573

2

2,28223

3

-0,339197

4

2,46287

5

0,44387

Total

2,09408

Kruskal-Wallis Test for ROA by Groups

Groups

Sample Size

Average Rank

1

10

61,2

2

48

81,4792

3

43

74,6512

4

28

55,25

5

12

60,9167

Test statistic = 8,97242 P-Value = 0,0617925

Mood's Median Test for ROA by Groups Total n = 141

Grand median = 0,0608248

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

10

5

5

0,0441637

-0,0820523

0,123533

2

48

19

29

0,0855747

0,0591239

0,11358

3

43

21

22

0,0697366

0,0250791

0,111734

4

28

18

10

0,0125945

-0,0636708

0,0666888

5

12

8

4

0,019074

-0,0212725

0,120007

Test statistic = 5,71883 P-Value = 0,221153

Appendix 12: ROA by groups for cattle specialization

One-Way ANOVA - ROA by Groups (ANNEE=2006&SPECIALISATION="Bovins viande")

Dependent variable: ROA

Factor: Groups

Selection variable: ANNEE=2006&SPECIALISATION="Bovins viande"

Number of observations: 45 Number of levels: 5

Summary Statistics for ROA

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

7

-0,105765

0,453978

-429,234%

-1,13039

0,140396

1,27079

-2,80058

2

6

-0,0453944

0,078609

-173,169%

-0,177484

0,0229301

0,200414

-1,00598

3

7

-0,0473511

0,111711

-235,92%

-0,212802

0,0912202

0,304023

-0,371181

4

16

-0,111976

0,203313

-181,569%

-0,736663

0,11937

0,856032

-3,26129

5

9

-0,112163

0,336903

-300,368%

-0,993887

0,114128

1,10801

-3,40561

Total

45

-0,0921169

0,257116

-279,119%

-1,13039

0,140396

1,27079

-7,86363

Groups

Stnd. kurtosis

1

3,66696

2

0,113159

3

-0,655198

4

4,54897

5

4,95777

Total

12,0237

Kruskal-Wallis Test for ROA by Groups

Groups

Sample Size

Average Rank

1

7

31,4286

2

6

21,8333

3

7

22,5714

4

16

19,5

5

9

23,7778

Test statistic = 4,10541 P-Value = 0,391929

Mood's Median Test for ROA by Groups Total n = 45

Grand median = -0,0284627

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

7

1

6

0,0516395

 
 

2

6

3

3

-0,0247187

 
 

3

7

3

4

-0,0179525

 
 

4

16

10

6

-0,0646852

-0,187257

0,028068

5

9

6

3

-0,0293466

-0,589257

0,107523

Test statistic = 5,69488 P-Value = 0,223123

One-Way ANOVA - ROA by Groups (ANNEE=2007&SPECIALISATION="Bovins viande")

Dependent variable: ROA

Factor: Groups

Selection variable: ANNEE=2007&SPECIALISATION="Bovins viande"

Number of observations: 45 Number of levels: 5

Summary Statistics for ROA

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

5

0,0746187

0,110029

147,455%

-0,0409659

0,217745

0,258711

0,141305

2

4

0,0162684

0,168061

1033,05%

-0,230272

0,138248

0,36852

-1,42673

3

10

0,00954246

0,130679

1369,44%

-0,222714

0,215079

0,437793

-0,964728

4

14

-0,0609528

0,218634

-358,694%

-0,79908

0,099552

0,898632

-5,15769

5

12

-0,0972349

0,295406

-303,806%

-0,922824

0,153846

1,07667

-3,2495

Total

45

-0,0330348

0,213964

-647,692%

-0,922824

0,217745

1,14057

-7,61542

Groups

Stnd. kurtosis

1

-0,824357

2

1,27345

3

0,42576

4

9,25855

5

4,09935

Total

12,5719

Kruskal-Wallis Test for ROA by Groups

Groups

Sample Size

Average Rank

1

5

29,6

2

4

29,5

3

10

26,3

4

14

18,2857

5

12

20,8333

Test statistic = 5,00392 P-Value = 0,286896

Mood's Median Test for ROA by Groups Total n = 45

Grand median = 0,0218779

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

5

2

3

0,0907909

 
 

2

4

1

3

0,0785487

 
 

3

10

3

7

0,0371746

-0,201921

0,112828

4

14

10

4

-0,00844839

-0,0582445

0,0252546

5

12

7

5

0,0165747

-0,297092

0,0768496

Test statistic = 5,68535 P-Value = 0,223911

One-Way ANOVA - ROA by Groups (ANNEE=2008&SPECIALISATION="Bovins viande")

Dependent variable: ROA

Factor: Groups

Selection variable: ANNEE=2008&SPECIALISATION="Bovins viande"

Number of observations: 45 Number of levels: 5

Summary Statistics for ROA

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

3

-0,0681985

0,155976

-228,708%

-0,241266

0,0615116

0,302777

-0,81616

2

6

0,0936297

0,0367747

39,2768%

0,0291386

0,137466

0,108327

-1,05367

3

12

0,190185

0,765362

402,431%

-0,228707

2,5915

2,82021

4,68812

4

10

-0,027013

0,0593021

-219,532%

-0,128615

0,0663722

0,194987

-0,361463

5

14

-0,197005

0,329566

-167,288%

-0,941719

0,0759867

1,01771

-2,45214

Total

45

-0,00864

0,452028

-5231,81%

-0,941719

2,5915

3,53322

11,3001

Groups

Stnd. kurtosis

1

 

2

0,926372

3

7,97102

4

-0,321322

5

1,13895

Total

35,7779

Kruskal-Wallis Test for ROA by Groups

Groups

Sample Size

Average Rank

1

3

19,0

2

6

39,1667

3

12

25,3333

4

10

21,0

5

14

16,3571

Test statistic = 13,5611 P-Value = 0,00883607

Mood's Median Test for ROA by Groups Total n = 45

Grand median = -0,00847679

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

3

2

1

-0,0248415

 
 

2

6

0

6

0,0991103

 
 

3

12

5

7

0,0165927

-0,183294

0,117365

4

10

6

4

-0,019054

-0,0979158

0,0233145

5

14

10

4

-0,0486992

-0,393363

0,0173552

Test statistic = 9,62062 P-Value = 0,0473268

One-Way ANOVA - ROA by Groups (ANNEE=2009&SPECIALISATION="Bovins viande")

Dependent variable: ROA

Factor: Groups

Selection variable: ANNEE=2009&SPECIALISATION="Bovins viande"

Number of observations: 45 Number of levels: 5

Summary Statistics for ROA

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

7

0,0219456

0,051473

234,548%

-0,0646818

0,0906458

0,155328

-0,277781

2

6

0,0469839

0,122463

260,649%

-0,114153

0,186734

0,300888

-0,157948

3

7

0,0075369

0,128871

1709,86%

-0,171113

0,230123

0,401236

0,640108

4

13

-0,00644273

0,165268

-2565,19%

-0,223332

0,462336

0,685667

2,92308

5

12

-0,191032

0,366677

-191,946%

-1,05433

0,0394772

1,09381

-2,77349

Total

45

-0,0419523

0,232259

-553,625%

-1,05433

0,462336

1,51666

-7,34034

Groups

Stnd. kurtosis

1

0,277796

2

-1,10656

3

0,33783

4

4,0552

5

1,87133

Total

14,9154

Kruskal-Wallis Test for ROA by Groups

Groups

Sample Size

Average Rank

1

7

28,4286

2

6

29,3333

3

7

25,0

4

13

20,9231

5

12

17,75

Test statistic = 4,99582 P-Value = 0,287726

Mood's Median Test for ROA by Groups Total n = 45

Grand median = -0,0214517

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

7

1

6

0,0143045

 
 

2

6

2

4

0,0517442

 
 

3

7

4

3

-0,0355858

 
 

4

13

8

5

-0,0368864

-0,106846

0,0743713

5

12

8

4

-0,0506681

-0,489059

0,0293248

Test statistic = 6,38753 P-Value = 0,172017

One-Way ANOVA - ROA by Groups (ANNEE=2010&SPECIALISATION="Bovins viande")

Dependent variable: ROA

Factor: Groups

Selection variable: ANNEE=2010&SPECIALISATION="Bovins viande"

Number of observations: 45 Number of levels: 5

Summary Statistics for ROA

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

5

0,0150524

0,0949592

630,858%

-0,121916

0,107682

0,229598

-0,543456

2

8

0,0492815

0,133

269,878%

-0,13138

0,25763

0,38901

0,0269102

3

7

0,0338206

0,105709

312,558%

-0,0764125

0,221189

0,297601

0,818161

4

15

0,0330233

0,173375

525,008%

-0,115176

0,613893

0,729069

4,73907

5

10

-0,120915

0,592286

-489,838%

-1,41254

0,982268

2,39481

-0,732483

Total

45

-0,000167523

0,301365

-179895,%

-1,41254

0,982268

2,39481

-4,15775

Groups

Stnd. kurtosis

1

-0,285199

2

-0,375168

3

0,169954

4

8,06292

5

2,10848

Total

17,7737

Kruskal-Wallis Test for ROA by Groups

Groups

Sample Size

Average Rank

1

5

24,6

2

8

27,375

3

7

25,0

4

15

22,1333

5

10

18,6

Test statistic = 2,31184 P-Value = 0,678615

Mood's Median Test for ROA by Groups Total n = 45

Grand median = 0,0134522

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

5

2

3

0,0136008

 
 

2

8

3

5

0,0500813

-0,129276

0,244492

3

7

3

4

0,0634198

 
 

4

15

9

6

-0,00312077

-0,0566846

0,0635826

5

10

6

4

-0,00640764

-0,597499

0,188712

Test statistic = 1,82153 P-Value = 0,76854

Appendix 13: ROA by groups for grain specialization

One-Way ANOVA - ROA by Groups (ANNEE=2006&SPECIALISATION="Grandes cultures")

Dependent variable: ROA

Factor: Groups

Selection variable: ANNEE=2006&SPECIALISATION="Grandes cultures"

Number of observations: 126 Number of levels: 5

Summary Statistics for ROA

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

26

-0,0210406

0,264087

-1255,13%

-0,717935

0,385031

1,10297

-1,9433

2

25

0,00810686

0,217864

2687,41%

-0,415281

0,488035

0,903316

-0,103519

3

28

-0,116418

0,412285

-354,143%

-2,05464

0,185067

2,23971

-8,91681

4

28

-0,031409

0,209427

-666,773%

-0,52968

0,400579

0,930259

0,126946

5

19

0,00295864

0,109342

3695,66%

-0,315782

0,194464

0,510247

-1,81182

Total

126

-0,0351374

0,270354

-769,419%

-2,05464

0,488035

2,54268

-16,0997

Groups

Stnd. kurtosis

1

1,11277

2

-0,0307004

3

20,8898

4

0,554087

5

2,91151

Total

55,7841

Kruskal-Wallis Test for ROA by Groups

Groups

Sample Size

Average Rank

1

26

66,9231

2

25

68,48

3

28

56,8214

4

28

59,3571

5

19

68,2105

Test statistic = 2,3065 P-Value = 0,679586

Mood's Median Test for ROA by Groups Total n = 126

Grand median = -0,0106826

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

26

11

15

0,026324

-0,102639

0,0944078

2

25

11

14

0,00499102

-0,0805615

0,132682

3

28

16

12

-0,0494749

-0,0861457

0,038731

4

28

17

11

-0,0426167

-0,114584

0,0563211

5

19

8

11

-0,00581426

-0,04485

0,0720474

Test statistic = 3,30621 P-Value = 0,507949

One-Way ANOVA - ROA by Groups (ANNEE=2007&SPECIALISATION="Grandes cultures")

Dependent variable: ROA

Factor: Groups

Selection variable: ANNEE=2007&SPECIALISATION="Grandes cultures"

Number of observations: 126 Number of levels: 5

Summary Statistics for ROA

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

17

-0,007065

0,34629

-4901,48%

-1,09085

0,420565

1,51142

-3,33089

2

20

0,153102

0,161233

105,311%

-0,146563

0,424526

0,571089

0,162655

3

28

0,142208

0,210249

147,846%

-0,374676

0,677594

1,05227

-0,432352

4

30

0,0629824

0,333997

530,302%

-1,35464

0,542145

1,89679

-6,01841

5

31

0,124657

0,159385

127,859%

-0,131722

0,550014

0,681736

1,66031

Total

126

0,100616

0,252418

250,873%

-1,35464

0,677594

2,03224

-10,5448

Groups

Stnd. kurtosis

1

4,71157

2

-0,605725

3

1,35227

4

12,217

5

0,561296

Total

26,2384

Kruskal-Wallis Test for ROA by Groups

Groups

Sample Size

Average Rank

1

17

51,0588

2

20

69,85

3

28

70,0714

4

30

60,9

5

31

62,8065

Test statistic = 3,648 P-Value = 0,455734

Mood's Median Test for ROA by Groups Total n = 126

Grand median = 0,119947

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

17

10

7

0,0704004

-0,154593

0,168393

2

20

11

9

0,101369

0,0783039

0,269983

3

28

9

19

0,188491

0,0397537

0,225054

4

30

16

14

0,101664

0,0372794

0,181625

5

31

17

14

0,0994869

0,0423933

0,189778

Test statistic = 4,7245 P-Value = 0,316751

One-Way ANOVA - ROA by Groups (ANNEE=2008&SPECIALISATION="Grandes cultures")

Dependent variable: ROA

Factor: Groups

Selection variable: ANNEE=2008&SPECIALISATION="Grandes cultures"

Number of observations: 126 Number of levels: 5

Summary Statistics for ROA

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

11

0,132713

0,42949

323,624%

-0,372089

1,10397

1,47606

1,43867

2

19

-0,00170479

0,334047

-19594,6%

-1,11512

0,344811

1,45993

-4,38283

3

31

0,0933312

0,227565

243,825%

-0,452873

0,441864

0,894738

-1,51654

4

36

0,120531

0,176681

146,586%

-0,357934

0,7116

1,06953

0,39532

5

29

0,232773

0,487943

209,622%

-0,152033

2,64574

2,79777

10,0901

Total

126

0,122303

0,332737

272,058%

-1,11512

2,64574

3,76086

14,46

Groups

Stnd. kurtosis

1

1,03476

2

6,07373

3

-0,0995506

4

5,01875

5

25,4604

Total

63,1311

Kruskal-Wallis Test for ROA by Groups

Groups

Sample Size

Average Rank

1

11

61,4545

2

19

53,1053

3

31

63,129

4

36

64,7778

5

29

69,8966

Test statistic = 2,51113 P-Value = 0,642644

Mood's Median Test for ROA by Groups Total n = 126

Grand median = 0,112204

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

11

6

5

0,0986874

-0,315322

0,49457

2

19

12

7

0,0782904

-0,00894632

0,17541

3

31

15

16

0,112627

-0,000184656

0,246034

4

36

17

19

0,123432

0,0862352

0,170685

5

29

13

16

0,127359

0,0548796

0,224914

Test statistic = 1,86041 P-Value = 0,761413

One-Way ANOVA - ROA by Groups (ANNEE=2009&SPECIALISATION="Grandes cultures")

Dependent variable: ROA

Factor: Groups

Selection variable: ANNEE=2009&SPECIALISATION="Grandes cultures"

Number of observations: 126 Number of levels: 5

Summary Statistics for ROA

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

16

0,011712

0,133853

1142,87%

-0,354306

0,234759

0,589065

-2,07989

2

30

-0,0478995

0,322939

-674,201%

-1,50563

0,400454

1,90608

-7,00551

3

24

-0,075446

0,303661

-402,488%

-1,08988

0,3173

1,40718

-3,70352

4

29

0,00888732

0,131824

1483,28%

-0,146988

0,436751

0,583739

4,25596

5

27

-0,0184289

0,289708

-1572,03%

-1,01514

0,555053

1,57019

-2,44534

Total

126

-0,0261916

0,256366

-978,807%

-1,50563

0,555053

2,06068

-10,8935

Groups

Stnd. kurtosis

1

2,45812

2

16,3957

3

4,61302

4

4,43736

5

5,06561

Total

26,7243

Kruskal-Wallis Test for ROA by Groups

Groups

Sample Size

Average Rank

1

16

74,3125

2

30

58,3

3

24

60,4167

4

29

66,069

5

27

62,8519

Test statistic = 2,3342 P-Value = 0,674549

Mood's Median Test for ROA by Groups Total n = 126

Grand median = -0,0253879

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

16

4

12

0,028231

-0,0257411

0,100183

2

30

19

11

-0,057458

-0,109656

0,0350027

3

24

12

12

-0,0297157

-0,100399

0,0758477

4

29

14

15

-0,0245652

-0,0545986

0,0302802

5

27

14

13

-0,0315569

-0,112985

0,0662393

Test statistic = 6,20485 P-Value = 0,184363

One-Way ANOVA - ROA by Groups (ANNEE=2010&SPECIALISATION="Grandes cultures")

Dependent variable: ROA

Factor: Groups

Selection variable: ANNEE=2010&SPECIALISATION="Grandes cultures"

Number of observations: 126 Number of levels: 5

Summary Statistics for ROA

Groups

Count

Average

Standard deviation

Coeff. of variation

Minimum

Maximum

Range

Stnd. skewness

1

23

0,14274

0,225007

157,634%

-0,414526

0,629534

1,04406

-0,951261

2

28

0,0441773

0,235867

533,911%

-0,61943

0,448297

1,06773

-1,69751

3

27

0,0456094

0,239838

525,851%

-0,501173

0,67582

1,17699

0,174262

4

22

0,103995

0,495929

476,878%

-0,574792

1,77651

2,35131

4,02694

5

26

0,0271355

0,336543

1240,23%

-0,436735

0,900406

1,33714

2,7171

Total

126

0,0694037

0,314165

452,664%

-0,61943

1,77651

2,39595

7,10176

Groups

Stnd. kurtosis

1

1,41796

2

1,15054

3

2,04443

4

5,40591

5

1,53559

Total

15,4533

Kruskal-Wallis Test for ROA by Groups

Groups

Sample Size

Average Rank

1

23

80,5217

2

28

64,7143

3

27

63,5185

4

22

56,4545

5

26

53,0769

Test statistic = 7,96551 P-Value = 0,0928499

Mood's Median Test for ROA by Groups Total n = 126

Grand median = 0,0352505

Groups

Sample Size

n<=

n>

Median

90,0% lower CL

90,0% upper CL

1

23

6

17

0,153682

0,0569592

0,230257

2

28

14

14

0,0352505

-0,0468007

0,207821

3

27

12

15

0,0373107

-0,0316293

0,116303

4

22

14

8

-0,012042

-0,110281

0,0668334

5

26

17

9

-0,0347476

-0,162994

0,0882766

Test statistic = 9,6921 P-Value = 0,0459461

Appendix 14: Cost of debt for farms of Isère

Specialization

number of observation cost of debt (market value)

15 3,8%

8 3,6%

15 3,5%

8 3,5%

Dairy Cattle Grain Diversified

46 3,5%

Mean

The cost of capital has been estimated using the market value for the cost of debt. For some specialization like cattle farming, we do not dispose of enough farms to collect 15 recent interest rates.

précédent sommaire










Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy



"Enrichissons-nous de nos différences mutuelles "   Paul Valery