ABSTRACT
The spectacular advances computer science applied to
geographic information systems (GIS) in recent times has favored the emergence
of several technological solutions. These developments have given rise to
enormous opportunities for digital management of the territory. Among the
technological solutions, the most famous Google Maps offers free online mapping
dynamic exhaustive of the Maps. In addition to meet the enormous needs of urban
indicators geotagged information, we did work on this project
«Integration of an urban observatory on Google
Maps.»
The problem of geolocation in the urban observatory is
particularly relevant in the sense that there is currently no data (descriptive
and geographical) reliable on the urban sector; we must stick to extrapolate
from data old and obsolete. This helps to curb the effectiveness of urban
management to make difficult investment programming and to prevent the
acquisition of knowledge to make cities engines of growth. The use of a
geolocation tool coupled to the data would allow better monitoring of
indicators
Our project's objective is to develop an interactive map
server (WebMapping) which map layer is formed from the resources of the Google
Maps servers and match information from the field to produce maps of urban
equipment and infrastructure of a city data to the client's request
To achieve this goal, we will participate in a study of a GPS
location of strategic sites in our core sector (health facilities), on the
other hand, using information from the field, we will build a postgresql
database that will link the information from the field to map from Google Maps
via KML scripts and PHP appropriate.
We will limit ourselves in our work to the city of Douala
Cameroon with the sectors of health facilities with the possibility of
extension to other areas and other cities.
Keywords: Geographic Information System (GIS),
Thematic Mapping, Web Mapping, data mining, Google API.
LISTE DES FIGURES
Figure 1. Vue de la ville de Douala 19
Figure 2. Composants d'un SIG 29
Figure 3. Les 03 dimensions d'un SIG 26
Figure 4. Latitude et Longitude d'un lieu 28
Figure 5. Représentation des données Raster 29
Figure 6. photo aérienne 30
Figure 7. image optique 30
Figure 8. Image radar 30
Figure 9. Carte scannée 31
Figure 10. Fonctionnement d'un SIG 32
Figure 11. Architecture d'un serveur cartographique sur internet
33
Figure 12. Les 3 segments du système GPS 37
Figure 13. Acteur UML 41
Figure 14. Diagramme des cas d'utilisation. 41
Figure 15. Exemple de Diagramme des séquences fonctionnel
43
Figure 16. Exemple de Diagramme des séquences conceptuel
45
Figure 17. Exemple Diagramme des activités 47
Figure 18. Exemple de Diagramme de classe 48
Figure 19. cas d'utilisation Ajouter utilisateur 52
Figure 20. Diagramme des cas d'utilisation VisioCity 52
Figure 21. Extrait du Diagramme des séquences VISO CITY
53
Figure 22. Aperçu du Diagramme des classes de VISIO CITY
54
Figure 23. Architecture de VisioCity 56
Figure 24. Environnement de programmation DreamWeaver 8. 59
Figure 25. Interface de PhpMyAdmin 61
Figure 26. Schéma relationnel de la base de données
65
Figure 27. Formulaire d'enregistrement des sites géo 68
Figure 28. Formulaire de contrôle d'accès 69
Figure 29. Interface public de visiocity 69
Figure 30. Interface d'administration de visiocity 69
Figure 31. Interface d'abonnement de VisoCity 70
Figure 32. GPS GARMIN OREGON 550t 71
|